首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the Drosophila cell line MLDmBG-1, a monoclonal antibody aBG-1 that can inhibit not only cell clumping but also cell spreading was generated. This antibody immunoprecipitates a complex of molecules consisting of a major 120 x 10(3) Mr and other components. To characterize the 120 x 10(3) Mr component, we purified it, generated antibodies to it, and cloned its cDNA. Sequencing of this cDNA suggests that the 120 x 10(3) Mr molecule is identical to PS beta, a beta chain of Drosophila integrins. The other components immunoprecipitated included two alpha chains of Drosophila integrins, PS1 alpha and PS2 alpha, as revealed using specific antibodies to these molecules. These suggest that aBG-1 recognizes the PS beta associated with PS1 alpha or PS2 alpha. However, immunostaining of embryos and larvae with aBG-1 showed that the staining pattern is similar to that for PS2 alpha but not for PS beta, suggesting that the antibody preferentially recognizes the PS beta associated with particular alpha chains in situ. We then attempted to characterize the ligands for these integrin complexes, using culture dishes coated with various vertebrate matrix proteins. These cells spread very well on dishes coated with vitronectin and, to a lesser extent, on those with fibronectin. This spreading was partially inhibited by aBG-1, but not by other control antibodies or RGD peptides. The cell attachment to these substrata was not affected by the antibody. The cells also can attach to dishes coated with laminin but without spreading, and this attachment was not inhibited by aBG-1. Furthermore, they do not attach to dishes coated with collagen type I, type IV, and fibrinogen. These results indicate that Drosophila PS integrins can recognize vertebrate vitronectin, and also fibronectin with a weaker affinity, at sites other than RGD sequences, and thus can function in cell-substratum adhesion.  相似文献   

2.
3.
4.
Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.  相似文献   

5.
Interaction of cell integrins with the ECM (extracellular matrix) proteins is commonly assumed to be associated with cell dissemination and tumour metastases. Since these processes depend on the mechanism of cell-protein interaction, we have attempted to show the contribution of α5β1 and αvβ3 integrins of the prostate cancer PC-3 cells in in vitro interaction with FN (fibronectin) adsorbed on defined polystyrene surfaces. Cell adhesion, spreading and cytoskeleton organization were studied using antibodies against integrins or a GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro) peptide. The results show that blocking the α5β1 integrin causes: (i) a decrease in the number of the adherent cells in the early phase of adhesion and (ii) a decrease in the dynamics of cell spreading and cell shape changes, and weaker reorganization of cytoskeletal proteins than in the control cells. Conversely, the blocking of the αvβ3 integrin: (i) causes no observable effect on the number of the adhered cells; however, (ii) causes an increase in the dynamics of cell spreading and cell shape changes, and stronger reorganization of cytoskeletal proteins than in the control cells. Interestingly, the blocking of integrins with a GRGDSP peptide strongly decreases the number of the adhered cells, and a complete inhibition of cell spreading. Our results strongly suggest that the α5β1 integrin plays the main role in the adhesion and spreading of PC-3 cells interacting with FN, whereas the αvβ3 integrin seems to regulate other receptors in the spreading process. Moreover, integrin-FN interaction through the RGD sequence evidently curbed the cell adhesion and spreading.  相似文献   

6.
We developed a ligand-mimetic antibody Fab fragment specific for Drosophila alphaPS2betaPS integrins to probe the ligand binding affinities of these invertebrate receptors. TWOW-1 was constructed by inserting a fragment of the extracellular matrix protein Tiggrin into the H-CDR3 of the alphavbeta3 ligand-mimetic antibody WOW-1. The specificity of alphaPS2betaPS binding to TWOW-1 was demonstrated by numerous tests used for other integrin-ligand interactions. Binding was decreased in the presence of EDTA or RGD peptides and by mutation of the TWOW-1 RGD sequence or the betaPS metal ion-dependent adhesion site (MIDAS) motif. TWOW-1 binding was increased by mutations in the alphaPS2 membrane-proximal cytoplasmic GFFNR sequence or by exposure to Mn2+. Although Mn2+ is sometimes assumed to promote maximal integrin activity, TWOW-1 binding in Mn2+ could be increased further by the alphaPS2 GFFNR --> GFANA mutation. A mutation in the betaPS I domain (betaPS-b58; V409D) greatly increased ligand binding affinity, explaining the increased cell spreading mediated by alphaPS2betaPS-b58. Further mutagenesis of this residue suggested that Val-409 normally stabilizes the closed head conformation. Mutations that potentially reduce interaction of the integrin beta subunit plexin-semaphorin-integrin (PSI) and stalk domains have been shown to have activating properties. We found that complete deletion of the betaPS PSI domain enhanced TWOW-1 binding. Moreover the PSI domain is dispensable for at least some other integrin functions because betaPS-DeltaPSI displayed an enhanced ability to mediate cell spreading. These studies establish a means to evaluate mechanisms and consequences of integrin affinity modulation in a tractable model genetic system.  相似文献   

7.
A role for integrin in the formation of sarcomeric cytoarchitecture   总被引:24,自引:0,他引:24  
T Volk  L I Fessler  J H Fessler 《Cell》1990,63(3):525-536
We propose that integrins help to coordinate the differentiation of the internal, sarcomeric cytoarchitecture of a muscle fiber with its immediate environment and are essential for correct integration of muscle cells into tissue. We found that integrin alpha PS2 beta PS accumulated at contact regions of Drosophila embryo cells cultured in D-22 medium on Drosophila laminin. Myotubes formed, but subsequent addition of serum or fibronectin was needed for sarcomere formation: integrin and actin became concentrated at Z-bands; myosin and actin occurred between the Z-bands. This change failed to occur in the multinucleate myotubes derived from integrin beta PS null myospheroid mutants. In normal embryos/early larvae, integrin was located at Z-bands and at muscle insertions. Myogenesis and Z-bands were defective in myospheroid embryos. Attachment, spreading, and growth of myoblasts and neurons on the laminin substrate utilized different binding proteins and were independent of integrin.  相似文献   

8.
The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD) could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×10(2)-6×10(11) RGD/mm(2). We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×10(5) RGD/mm(2) on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×10(8) RGD/mm(2) irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry.  相似文献   

9.
Site-directed mutagenesis studies have suggested that additional peptide information in the central cell-binding domain of fibronectin besides the minimal Arg-Gly-Asp (RGD) sequence is required for its full adhesive activity. The nature of this second, synergistic site was analyzed further by protein chemical and immunological approaches using biological assays for adhesion, migration, and matrix assembly. Fragments derived from the cell-binding domain were coupled covalently to plates, and their specific molar activities in mediating BHK cell spreading were compared with that of intact fibronectin. A 37-kD fragment purified from chymotryptic digests of human plasma fibronectin had essentially the same specific molar activity as intact fibronectin. In contrast, other fragments such as an 11.5-kD fragment lacking NH2-terminal sequences of the 37-kD fragment had only poor spreading activity on a molar basis. Furthermore, in competitive inhibition assays of fibronectin-mediated cell spreading, the 37-kD fragment was approximately 325-fold more active than the GRGDS synthetic peptide on a molar basis. mAbs were produced using the 37-kD protein as an immunogen and their epitopes were characterized. Two separate mAbs, one binding close to the RGD site and the other to a site approximately 15 kD distant from the RGD site, individually inhibited BHK cell spreading on fibronectin by greater than 90%. In contrast, an antibody that bound between these two sites had minimal inhibitory activity. The antibodies found to be inhibitory in cell spreading assays for BHK cells also inhibited both fibronectin-mediated cell spreading and migration of human HT-1080 cells, functions which were also dependent on function of the alpha 5 beta 1 integrin (fibronectin receptor). Assembly of endogenously synthesized fibronectin into an extracellular matrix was not significantly inhibited by most of the anti-37-kD mAbs, but was strongly inhibited only by the antibodies binding close to the RGD site or the putative synergy site. These results indicate that a second site distant from the RGD site on fibronectin is crucial for its full biological activity in diverse functions dependent on the alpha 5 beta 1 fibronectin receptor. This site is mapped by mAbs closer to the RGD site than previously expected.  相似文献   

10.
Microfibril-associated glycoprotein (MAGP)-1 and MAGP-2 are small structurally related glycoproteins that are specifically associated with fibrillin-containing microfibrils. MAGP-2, unlike MAGP-1, contains an RGD motif with potential for integrin binding. To determine if the RGD sequence is active, a series of cell binding assays was performed. MAGP-2 was shown to promote the attachment and spreading of bovine nuchal ligament fibroblasts when coated onto plastic wells in molar quantities similar to those of fibronectin. In contrast, approximately 10-fold more MAGP-1 was required to support comparable levels of cell adhesion. The fibroblast binding to MAGP-2 was completely inhibited if the peptide GRGDSP or the MAGP-2-specific peptide GVSGQRGDDVTTVTSET was added to the reaction medium at a 10 microM final concentration. The control peptide GRGESP had no effect on the interaction. These findings indicate that the cell interaction with MAGP-2 is an RGD-mediated event. A monoclonal antibody to human alphaVbeta3 integrin (LM609) almost completely blocked cell attachment to MAGP-2 when added to the medium at 0.5 microgram/ml, whereas two monoclonal antibodies specific for the human beta1 integrin subunit, 4B4 (blocking) and QE2.E5 (activating), had no effect even at 10 microgram/ml. Fetal bovine aortic smooth muscle cells, ear cartilage chondrocytes, and arterial endothelial cells and human skin fibroblasts and osteoblasts were also observed to adhere strongly to MAGP-2. In addition, each cell type was able to spread on MAGP-2 substrate, with the exception of the endothelial cells, which remained spherical after 2 h of incubation. The binding of each cell type was blocked when the anti-alphaVbeta3 integrin antibody was included in the assay, indicating that alphaVbeta3 integrin is the major receptor for MAGP-2 on several cell types. Thus, MAGP-2 may mediate interactions between fibrillin-containing microfibrils and cell surfaces during the development of a variety of tissues.  相似文献   

11.
The laminin A chain has been sequenced by cDNA cloning and was found to contain an RGD sequence. Synthetic peptides containing the RGD sequence and flanking amino acids were active in mediating cell adhesion, spreading, migration, and neurite outgrowth. Furthermore, endothelial cell attachment to a laminin substrate was inhibited by an RGD-containing synthetic peptide. Antisera against the integrin (fibronectin) receptor, and monoclonal antibody to the integrin, VLA-6, inhibited cell interaction with laminin, as well as with peptides containing an RGD sequence. These results suggest that the RGD containing site of laminin is active and interacts with the integrin family of receptors in certain cells.  相似文献   

12.
This study examined whether enamel matrix derivative (EMD) inhibits the adhesion of cancer cells to bone. A typical breast cancer cell line, MCF-7, was used. Conditioned human osteosarcoma cell (Saos-2) medium was used as extracellular bone matrix (ECBM) to measure cell attachment. MCF-7 cells were incubated on ECBM-coated culture plates with or without soluble EMD, Arg-Gly-Asp (RGD) sequence blocking peptides, recombinant bone sialoprotein (rBSP), or specific integrin antibodies, and the attached cells were quantified using toluidine blue staining. EMD markedly reduced the attachment of MCF-7 cells to ECBM in a dose-dependent manner. An RGD peptide (GRGDSP) and recombinant BSP inhibited cell attachment to the same degree as EMD. Similarly, anti-alphavbeta3 integrin antibody strongly reduced cell attachment, whereas anti-alphavbeta5 and anti-beta1 integrin antibodies had less marked effects on cell attachment. These results show that EMD inhibits MCF-7 cell attachment to a bone matrix and that it might be useful as an anti-adhesive agent for breast cancer cells to bone in vivo.  相似文献   

13.
In manganese-containing medium, tissue cells can spread on albumin and other substrata typically nonadhesive for cells in calcium/magnesium-containing medium. To learn whether integrin receptors play a role in Mn-dependent adhesion, we tested the effects of RGD peptides and polyclonal anti-fibronectin receptor antibodies on BHK cell spreading on fibronectin and albumin-coated substrata. In Ca/Mg-containing medium on fibronectin substrata, the RGD-related peptides GRG-DSP and GRGDS but not RGDS inhibited cell spreading. In Mn-containing medium, spreading on albumin was inhibited by GRGDSP and GRGDS and also by RGDS. GRGESP, on the other hand, did not inhibit cell spreading under any condition tested. Antibodies directed against fibronectin receptors also inhibited Mn-dependent cell spreading on albumin substrata, but higher levels of antibody were required than were necessary to inhibit Ca/Mg-dependent spreading on fibronectin. On the basis of these results, we suggest that integrin receptors, but probably not fibronectin receptors, mediate Mn-dependent BHK cell spreading on albumin.  相似文献   

14.
Tat, the transactivation factor of human immunodeficiency virus type 1 (HIV-1), contains the highly conserved tripeptide sequence Arg-Gly-Asp (RGD) that characterizes sites for integrin-mediated cell adhesion. The tat protein was assayed for cell attachment activity by measuring the adhesion of monocytic, T lymphocytic, and skeletal muscle-derived cell lines to tat-coated substratum. All cell lines tested bound to tat in a dose-dependent manner and the tat cell adhesion required the RGD sequence because tat mutants constructed to contain an RGE or KGE tripeptide sequence did not mediate efficient cell adhesion. The tat-mediated cell attachment also required divalent cations and an intact cytoskeleton. In addition, cell adhesion to tat was inhibited in the presence of an RGD-containing peptide GRGDSPK or an anti-tat mAb that recognizes the RGD epitope. These results strongly suggest that cells are bound to tat through an integrin. Interestingly, myoblast cells bound to tat remained round, whereas the same cells attached through an integrin for a matrix protein typically flatten and spread. The role of this RGD-dependent cellular adhesion of tat in HIV-1 infection remains to be determined.  相似文献   

15.
T Bogaert  N Brown  M Wilcox 《Cell》1987,51(6):929-940
We establish that the position-specific antigen 2 (PS2), a Drosophila cell surface glycoprotein complex, is an invertebrate member of the vertebrate fibronectin receptor (integrin) family. New monoclonal antibodies show that in Drosophila embryos and larvae PS2 alpha subunits have a size of ca. 140 kd. Analysis of cDNA and genomic clones revealed that the canonical PS2 alpha subunit contains 1394 amino acids and has extensive homology to the heavy and light chains of integrin alpha subunits. The distribution of the PS2 antigen is regulated at the level of PS2 alpha subunit mRNA. In early Drosophila development the protein is restricted to mesoderm and appears to be involved in muscle attachment. We suggest that PS2, like vertebrate fibronectin receptors, mediates changes in cell shape and cell-extracellular matrix adhesion by binding to a basement membrane protein.  相似文献   

16.
Feng Y  Mrksich M 《Biochemistry》2004,43(50):15811-15821
This work reports on the role of the synergy peptide PHSRN in mediating the adhesion of cells. The attachment of baby hamster kidney cells and 3T3 Swiss fibroblasts to model substrates presenting either GRGDS or PHSRN was evaluated using self-assembled monolayers of alkanethiolates on gold presenting the peptide ligands mixed with tri(ethylene glycol) groups. These substrates permit rigorous control over the structures and densities of peptide ligands and at the same time prevent nonspecific interactions with adherent cells. Both cell types attached efficiently to monolayers presenting either the RGD or the PHSRN peptide but not to monolayers presenting scrambled peptide GRDGS or HRPSN. Cell attachment was comparable on substrates presenting either peptide ligand but less efficient than on substrates presenting the protein fibronectin. The degree of cell spreading, however, was substantially higher on substrates presenting RGD relative to PHSRN. Staining of 3T3 fibroblasts with anti-vinculin and phalloidin revealed clear cytoskeletal filaments and focal adhesions for cells attached by way of either RGD or PHSRN. Inhibition experiments showed that the attachment of 3T3 fibroblasts to monolayers presenting RGD could be inhibited completely by a soluble RGD peptide and partially by a soluble PHSRN peptide. IMR 90 fibroblast attachment to monolayers presenting PHSRN could be inhibited with anti-integrin alpha(5) or anti-integrin beta(1) antibody. This work demonstrates unambiguously that PHSRN alone can support the attachment of cells and that the RGD and PHSRN bind competitively to the integrin receptors.  相似文献   

17.
Ligation of integrins with extracellular matrix molecules induces the clustering of actin and actin-binding proteins to focal adhesions, which serves to mechanically couple the matrix with the cytoskeleton. During wound healing and development, matrix deposition and remodeling may impart additional tensile forces that modulate integrin-mediated cell functions, including cell migration and proliferation. We have utilized the ability of cells to contract floating collagen gels to determine the effect of fibronectin polymerization on mechanical tension generation by cells. Our data indicate that fibronectin polymerization promotes cell spreading in collagen gels and stimulates cell contractility by a Rho-dependent mechanism. Fibronectin-stimulated contractility was dependent on integrin ligation; however, integrin ligation by fibronectin fragments was not sufficient to induce either tension generation or cell spreading. Furthermore, treatment of cells with polyvalent RGD peptides or pre-polymerized fibronectin did not stimulate cell contractility. Fibronectin-induced contractility was blocked by agents that inhibit fibronectin polymerization, suggesting that the process of fibronectin polymerization is critical in triggering cytoskeletal tension generation. These data indicate that Rho-mediated cell contractility is regulated by the process of fibronectin polymerization and suggest a novel mechanism by which extracellular matrix fibronectin regulates cytoskeletal organization and cell function.  相似文献   

18.
Plant cells cultured in bioreactors are strongly influenced by mechanical forces. However, the molecular mechanism of plant cell mechanoreception has maintained unclear. In animal cells, the Arg-Gly-Asp (RGD) motif can be found in proteins of the extracellular matrix. Integrins link the intracellular cytoskeleton of cells with the extracellular matrix by recognizing this RGD motif. Integrin has been demonstrated to function as an apparatus not only for adhesion but also for mechanotransduction. In plant cells, the molecules that mediate the structural continuity between wall and membrane are unknown. Here, we found that synthetic RGD peptide could dramatically reduce the level of phosphorylation of MAPK-like cascades that are activated by shear stress and reduce the alkalinization response, production of reactive oxygen species (ROS) and accumulation of phenolics by Taxus cuspidata cells during shear stress. These results implicate that a RGD recognition system may exist in Taxus cells and play an important role in signal transduction of shear stress. Although the Arabidopsis genome database shows that the plant seems to lack a homologue of animal integrin, plant cells may use other RGD-binding proteins to recognize the RGD motif. The correlative mechanism is discussed.  相似文献   

19.
Bovine aortic endothelial cell (BAEC) attachments to laminin, fibronectin, and fibrinogen are inhibited by soluble arginine-glycine-aspartate (RGD)-containing peptides, and YGRGDSP activity is responsive to titration of either soluble peptide or matrix protein. To assess the presence of RGD-dependent receptors, immunoprecipitation and immunoblotting studies were conducted and demonstrated integrin beta 1, beta 3, and associated alpha subunits as well as a beta 1 precursor. Immunofluorescence of BAECs plated on laminin, fibronectin, and fibrinogen reveals different matrix-binding specificities of each of these integrin subclasses. By 1 h after plating, organization of beta 1 integrin into fibrillar streaks is influenced by laminin and fibronectin, whereas beta 3 integrin punctate organization is influenced by fibrinogen and the integrin spatial distribution changes with time in culture. In contrast, the nonintegrin laminin-binding protein LB69 only organizes after cell-substrate contact is well established several hours after plating. Migration of BAECs is also mediated by both integrin and nonintegrin matrix-binding proteins. Specifically, BAEC migration on laminin is remarkably sensitive to RGD peptide inhibition, and, in its presence, beta 1 integrin organization dissipates and reorganizes into perinuclear vesicles. However, RGD peptides do not alter LB69 linear organization during migration. Similarly, agents that block LB69--e.g., antibodies to LB69 as well as YIGSR-NH2 peptide--do not inhibit attachment of nonmotile BAECs to laminin. However, both anti-LB69 and YIGSR-NH2 inhibit late adhesive events such as spreading. Accordingly, we propose that integrin and nonintegrin extracellular matrix-binding protein organizations in BAECs are both temporally and spatially segregated during attachment processes. High affinity nonintegrin interaction with matrix may create necessary stable contacts for longterm attachment, while lower affinity integrins may be important for initial cell adhesion as well as for transient contacts of motile BAECs.  相似文献   

20.
Extracellular matrix proteins play key roles in controlling the activities of osteoblasts and osteoclasts in bone remodeling. These bone-specific extracellular matrix proteins contain amino acid sequences that mediate cell adhesion, and many of the bone-specific matrix proteins also contain acidic domains that interact with the mineral surface and may orient the signaling domains. Here we report a fusion peptide design that is based on this natural approach for the display of signaling peptide sequences at biomineral surfaces. Salivary statherin contains a 15-amino acid hydroxyapatite binding domain (N15) that is loosely helical in solution. To test whether N15 can serve to orient active peptide sequences on hydroxyapatite, the RGD and flanking residues from osteopontin were fused to the C terminus. The fusion peptides bound tightly to hydroxyapatite, and the N15-PGRGDS peptide mediated the dose-dependent adhesion of Moalpha(v) melanoma cells when immobilized on the hydroxyapatite surface. Experiments with an integrin-sorted Moalpha(v) subpopulation demonstrated that the alpha(v)beta(3) integrin was the primary receptor target for the fusion peptide. Solid state NMR experiments showed that the RGD portion of the hydrated fusion peptide is highly dynamic on the hydroxyapatite surface. This fusion peptide framework may thus provide a straightforward design for immobilizing bioactive sequences on hydroxyapatite for biomaterials, tissue engineering, and vaccine applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号