首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallins from pigeon eye lenses were isolated and purified by gel-permeation chromatography and characterized by gel electrophoresis, amino-acid composition and sequence analysis. Alpha- and beta-crystallins could be obtained in relatively pure forms by single-step size-exclusion chromatography whereas an extra step of ion-exchange chromatography was needed for the separation of delta-crystallin from the beta-crystallin fraction. In contrast to most characterized vertebrate species, a large amount of glycogen is eluted as a high molecular form in the first peak of the gel filtration column. Pigeon delta-crystallin, similar to duck and reptilian delta-crystallins, exists as a tetrameric structure of about 200 kDa in the native form and is composed of one major subunit of 50 kDa with heterogeneous isoelectric points spreading in a range of 4.7 to 6.8. In contrast to those obtained from duck, goose and caiman, delta-crystallin isolated from the pigeon lens possessed very little argininosuccinate lyase activity. However, pigeon delta-crystallin can still cross-react with the antibody against enzymically active duck delta-crystallin as revealed by the sensitive immunoblotting technique. It was also shown that the delta-crystallin content of the total pigeon soluble proteins decreased with the age of the animal. Structural analysis of purified delta-crystallin fraction was made with respect to its amino-acid composition and protein primary sequence. N-terminal sequence analysis indicated the presence of blocked amino-termini in all crystallin fractions of pigeon lenses. Therefore, a sequence analysis of PCR (polymerase chain reaction) amplified delta-crystallin cDNA was employed to deduce the protein sequence of this crystallin. Structural comparison of delta-crystallin sequences from pigeon, chicken and duck lenses casts some doubts on the recent claim that His-89-->Gln mutation in the chicken delta-crystallin may account for the loss of argininosuccinate lyase activity in this avian species, as compared to high enzymic activity in the duck crystallin (Barbosa et al. (1991) J. Biol. Chem. 266, 5286-5290).  相似文献   

2.
The major soluble protein in the lenses of most birds and reptiles is delta-crystallin. In chickens and ducks the delta-crystallin gene has duplicated, and in the duck both genes contribute to the protein in the lens, while in the chicken lens there is a great preponderance of the delta 1 gene product. Purified delta-crystallin has previously been shown to possess the enzymatic activity of argininosuccinate lyase. In order to determine the enzymatic properties of the two duck delta-crystallins their corresponding cDNA molecules were placed in yeast and bacterial expression plasmids. In Saccharomyces cerevisiae, the activity of each crystallin was assessed by transformation of the expression plasmids into a strain deficient for argininosuccinate lyase activity. The ability of the resulting yeast to grow on arginine deficient medium was used as a measure of enzymatic activity. Yeast expressing the duck delta 2-crystallin protein grew rapidly, while those expressing delta 1-crystallin failed to grow. Enzyme activity measurements confirmed the presence of activity in the delta 2-crystallin-expressing yeast, and no detectable activity could be demonstrated in the delta 1-crystallin-expressing yeast. Northern blotting of RNA from the transformed yeast revealed equal levels of mRNA species from the two constructs. For further analysis, the delta 2-crystallin cDNA was placed in the bacterial expression plasmid, pET-3d. The delta 2-crystallin protein produced in Escherichia coli was purified to homogeneity and analyzed to determine the kinetic properties. A Km of 0.35 mM was determined for argininosuccinate and a Vm of 3.5 mumols/min/mg was determined. These data demonstrate that, following duplication of the primordial argininosuccinate lyase gene, one of the genes maintained its role as an enzyme (delta 2-crystallin) while also serving as a crystallin and the other has evolved to specialize as a structural protein in the lens (delta 1-crystallin), presumably losing most or all of its catalytic capacity.  相似文献   

3.
Screening of lens homogenates from the representative species of five major classes of vertebrates was undertaken to search for delta-crystallin with argininosuccinate lyase activity. Purification and biochemical characterization of delta-crystallins from the avian and reptilian species revealed differences in their electrophoretic and kinetic properties in spite of their similar tetrameric structure of about 200 kDa in the native forms. Chicken delta-crystallin, in contrast to those obtained from duck, goose and caiman, is almost devoid of the enzymatic activity. Two-dimensional gel electrophoresis of lens homogenates indicated that in the chicken lens delta-crystallin is composed of a subunit with an isoelectric point of 5.9 and a subunit mass of 50 kDa whereas that of goose lenses possesses heterogeneous subunits with isoelectric points spreading in a range of 5.9 to 6.8. Immunological comparison of inactive and active delta-crystallins from the chicken, duck and caiman lenses established the apparent structural similarity of all delta-crystallins to the authentic enzyme regarding some of common surface epitopes, yet they are not completely identical. Kinetic constants for two of the active delta-crystallins, i.e. those from the duck and goose of the Anatidae family, were also determined and their catalyzed reaction was shown to conform to a random Uni-Bi kinetic mechanism similar to that of the argininosuccinate lyase from the bovine liver.  相似文献   

4.
Delta-crystallin is directly related to argininosuccinate lyase (ASL), and catalyzes the reversible hydrolysis of argininosuccinate to arginine and fumarate. Two delta-crystallin isoforms exist in duck lenses, delta1 and delta2, which are 94% identical in amino acid sequence. Although the sequences of duck delta2-crystallin (ddeltac2) and duck delta1-crystallin (ddeltac1) are 69 and 71% identical to that of human ASL, respectively, only ddeltac2 has maintained ASL activity. Domain exchange experiments and comparisons of various delta-crystallin structures have suggested that the amino acid substitutions in the 20's (residues 22-31) and 70's (residues 74-89) loops of ddeltac1 are responsible for the loss of enzyme activity in this isoform. To test this hypothesis, a double loop mutant (DLM) of ddeltac1 was constructed in which all the residues that differ between the two isoforms in the 20's and 70's loops were mutated to those of ddeltac2. Contrary to expectations, kinetic analysis of the DLM found that it was enzymatically inactive. Furthermore, binding of argininosuccinate by the DLM, as well as the ddeltac1, could not be detected by isothermal titration calorimetry (ITC). To examine the conformation of the 20's and 70's loops in the DLM, and to understand why the DLM is unable to bind the substrate, its structure was determined to 2.5 A resolution. Comparison of this structure with both wild-type ddeltac1 and ddeltac2 structures reveals that the conformations of the 20's and 70's loops in the DLM mutant are very similar to those of ddeltac2. This suggests that the five amino acid substitutions in domain 1 which lie outside of the two loop regions and which are different in the DLM, and ddeltac2, must be important enzymatically. The structure of the DLM in complex with sulfate was also determined to 2.2 A resolution. This structure demonstrates that the conformational changes of the 280's loop and domain 3, previously observed in ddeltac1, also occur in the DLM upon sulfate binding, reinforcing the hypothesis that these events may occur in the active ddeltac2 protein during catalysis.  相似文献   

5.
Delta-crystallin, the major soluble protein component of the avian and reptilian eye lens, is homologous to the urea cycle enzyme argininosuccinate lyase (ASL). In duck lenses there are two delta crystallins, denoted delta1 and delta2. Duck delta2 is both a major structural protein of the lens and also the duck orthologue of ASL, an example of gene recruitment. Although 94% identical to delta2/ASL in the amino acid sequence, delta1 is enzymatically inactive. A series of hybrid proteins have been constructed to assess the role of each structural domain in the enzymatic mechanism. Five chimeras--221, 122, 121, 211, and 112, where the three numbers correspond to the three structural domains and the value of 1 or 2 represents the protein of origin, delta1 or delta2, respectively--were constructed and thermodynamically and kinetically analyzed. The kinetic analysis indicates that only domain 1 is crucial for restoring ASL activity to delta1 crystallin, and that amino acid substitutions in domain 2 may play a role in substrate binding. These results confirm the hypothesis that only one domain, domain 1, is responsible for the loss of catalytic activity in delta1. The thermodynamic characterization of human ASL (hASL) and duck delta1 and delta2 indicate that delta crystallins are slightly less stable than hASL, with the delta1 being the least stable. The deltaGs of unfolding are 57.25, 63.13, and 70.71 kcal mol(-1) for delta1, delta2, and hASL, respectively. This result was unexpected, and we speculate that delta crystallins have adapted to their structural role by adopting a slightly less stable conformation that might allow for enhanced protein-protein and protein-solvent interactions.  相似文献   

6.
The major soluble avian eye lens protein, delta crystallin, is highly homologous to the housekeeping enzyme argininosuccinate lyase (ASL). ASL is part of the urea and arginine-citrulline cycles and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. In duck lenses, there are two delta crystallin isoforms that are 94% identical in amino acid sequence. Only the delta2 isoform has maintained ASL activity and has been used to investigate the enzymatic mechanism of ASL. The role of the active site residues Ser-29, Asp-33, Asp-89, Asn-116, Thr-161, His-162, Arg-238, Thr-281, Ser-283, Asn-291, Asp-293, Glu-296, Lys-325, Asp-330, and Lys-331 have been investigated by site-directed mutagenesis, and the structure of the inactive duck delta2 crystallin (ddeltac2) mutant S283A with bound argininosuccinate was determined at 1.96 A resolution. The S283A mutation does not interfere with substrate binding, because the 280's loop (residues 270-290) is in the open conformation and Ala-283 is more than 7 A from the substrate. The substrate is bound in a different conformation to that observed previously indicating a large degree of conformational flexibility in the fumarate moiety when the 280's loop is in the open conformation. The structure of the S283A ddeltac2 mutant and mutagenesis results reveal that a complex network of interactions of both protein residues and water molecules are involved in substrate binding and specificity. Small changes even to residues not involved directly in anchoring the argininosuccinate have a significant effect on catalysis. The results suggest that either His-162 or Thr-161 are responsible for proton abstraction and reinforce the putative role of Ser-283 as the catalytic acid, although we cannot eliminate the possibility that arginine is released in an uncharged form, with the solvent providing the required proton. A detailed enzymatic mechanism of ASL/ddeltac2 is presented.  相似文献   

7.
Delta-crystallins are the major structural eye lens proteins of most birds and reptiles and are direct homologues of the urea cycle enzyme argininosuccinate lyase. There are two isoforms of delta-crystallin, delta Iota and delta IotaIota, but only delta IotaIota crystallin exhibits argininosuccinate lyase (ASL) activity. At the onset of this study, the structure of argininosuccinate lyase/delta IotaIota crystallin with bound inhibitor or substrate analogue was not available. Biochemical and X-ray crystallographic studies had suggested that H162 may function as the catalytic base in the argininosuccinate lyase/delta IotaIota crystallin reaction mechanism, either directly or indirectly through the activation of a water molecule. The identity of the catalytic acid was unknown. In this study, the argininosuccinate substrate was modeled into the active site of duck delta IotaIota crystallin, using the coordinates of an inhibitor-bound Escherichia coli fumarase C structure to orient the fumarate moiety of the substrate. The model served as a means of identifying active site residues which are positioned to potentially participate in substrate binding and/or catalysis. On the basis of the results of the modeling, site-directed mutagenesis was performed on several amino acids, and the kinetic and thermodynamic properties of each mutant were determined. Kinetic studies reveal that five residues, R115, N116, T161, S283, and E296, are essential for catalytic activity. Determination of the free energy of unfolding/refolding of wild-type and mutant delta II crystallins revealed that all constructs exhibit similar thermodynamic stabilities. During the course of this work, the structure of an inactive delta IotaIota crystallin mutant with bound substrate was solved [Vallee et al. (1999) Biochemistry 38, 2425-2434], which has allowed the kinetic data to be interpreted on a structural basis.  相似文献   

8.
Tsai M  Koo J  Howell PL 《Biochemistry》2005,44(25):9034-9044
Delta-crystallin, the major soluble protein component in the avian eye lens, is homologous to argininosuccinate lyase (ASL). Two delta-crystallin isoforms exist in ducks, delta1- and delta2-crystallin, which are 94% identical in amino acid sequence. While duck delta2-crystallin (ddeltac2) has maintained ASL activity, evolution has rendered duck delta1-crystallin (ddeltac1) enzymatically inactive. Previous attempts to regenerate ASL activity in ddeltac1 by mutating the residues in the 20s (residues 22-31) and 70s (residues 74-89) loops to those found in ddeltac2 resulted in a double loop mutant (DLM) which was enzymatically inactive (Tsai, M. et al. (2004) Biochemistry 43, 11672-82). This result suggested that one or more of the remaining five amino acid substitutions in domain 1 of the DLM contributes to the loss of ASL activity in ddeltac1. In the current study, residues Met-9, Val-14, Ala-41, Ile-43, and Glu-115 were targeted for mutagenesis, either alone or in combination, to the residues found in ddeltac2. ASL activity was recovered in the DLM by changing Met-9 to Trp, and this activity is further potentiated in the DLM-M9W mutant when Glu-115 is changed to Asp. The roles of Trp-9 and Asp-115 were further investigated by site-directed mutagenesis in wild-type ddeltac2. Changing the identity of either Trp-9 or Asp-115 in ddeltac2 resulted in a dramatic drop in enzymatic activity. The loss of activity in Trp-9 mutants indicates a preference for an aromatic residue at this position. Truncation mutants of ddeltac2 in which the first 8, 9, or 14 N-terminal residues were removed displayed either decreased or no ASL activity, suggesting residues 1-14 are crucial for enzymatic activity in ddeltac2. Our kinetic studies combined with available structural data suggest that the N-terminal arm in ASL/delta2-crystallin is involved in stabilizing regions of the protein involved in substrate binding and catalysis, and in completely sequestering the substrate from the solvent.  相似文献   

9.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

10.
G J Wistow  J Piatigorsky 《Gene》1990,96(2):263-270
Argininosuccinate lyase(ASL)/delta-crystallin is a prominent example of an enzyme-crystallin with roles as both a catalyst and a major structural component of the eye lens in birds and reptiles. In chicken it appears that gene duplication and separation of function may have occurred with one gene product acting primarily as a crystallin and one primarily as an enzyme. However, two delta-crystallin-encoding genes are abundantly expressed in the lens of the embryonic duck (Anas platyrhynchos) which has extremely high ASL activity. Here the isolation and sequence analysis of full length cDNA clones for both duck delta-crystallins are described. The two delta-crystallins are highly similar (94% identical in predicted aa sequence), probably as a result of gene conversion. However, the cDNA for duck delta 2-crystallin contains an in-frame insertion of two codons, probably the result of a recent intron boundary slippage. ASL/delta-crystallin belongs to a superfamily of lyases, including fumarases, aspartases and adenylosuccinate lyase which possess some highly conserved blocks of aa sequence. There may be some clues to the tertiary structures of these conserved motifs in otherwise unrelated proteins for which three-dimensional structures are known.  相似文献   

11.
Duck delta1 and delta2 crystallin are 94% identical in amino acid sequence, and while delta2 crystallin is the duck orthologue of argininosuccinate lyase (ASL) and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate, the delta1 isoform is enzymatically inactive. The crystal structures of wild type duck delta1 and delta2 crystallin have been solved at 2.2 and 2.3 A resolution, respectively, and the refinement of the turkey delta1 crystallin has been completed. These structures have been compared with two mutant duck delta2 crystallin structures. Conformational changes were observed in two regions of the N-terminal domain with intraspecies differences between the active and inactive isoforms localized to residues 23-32 and both intra- and interspecies differences localized to the loop of residues 74-89. As the residues implicated in the catalytic mechanism of delta2/ASL are all conserved in delta1, the amino acid substitutions in these two regions are hypothesized to be critical for substrate binding. A sulfate anion was found in the active site of duck delta1 crystallin. This anion, which appears to mimic the fumarate moiety of the argininosuccinate substrate, induces a rigid body movement in domain 3 and a conformational change in the loop of residues 280-290, which together would sequester the substrate from the solvent. The duck delta1 crystallin structure suggests that Ser 281, a residue strictly conserved in all members of the superfamily, could be the catalytic acid in the delta2 crystallin/ASL enzymatic mechanism.  相似文献   

12.
13.
The tetrameric delta2-crystallin from duck lens exhibits a reversible dissociation-denaturation process in solutions containing guanidine hydrochloride (GdnHCl). Sigmoidal or biphasic curves for the dissociation/denaturation processes, obtained using different methods of structural analysis, as a function of GdnHCl concentration were not coincidental with each other. delta2-crystallin in 0.91 M GdnHCl existed primarily as a monomer, which had no endogenous argininosuccinate lyase activity. After dilution of the GdnHCl-treated protein, the monomers reassociated into tetramers with concomitant recovery of enzyme activity. The sigmoidal recovery of enzyme activity demonstrates a cooperative hysteretic reactivation process. When the concentration of GdnHCl was higher than 1.2 M, various partially unfolded soluble forms of delta2-crystallin were produced from the dissociated monomers as shown by size-exclusion chromatography. The formation of a partially unfolded intermediate during the dissociation-denaturation process is proposed.  相似文献   

14.
J Piatigorsky 《Biochemistry》1981,20(22):6427-6431
delta-Crystallin of the embryonic duck lens was compared with that of the embryonic chicken lens with respect to polypeptide composition, synthesis, and messenger ribonucleic acid (mRNA) sequences. Labeling experiments with [35S]methionine revealed that the duck delta-crystallin is composed of minor amounts of polypeptides with molecular weights near 50000 (50K) and 49000 (49K) and much greater amounts of polypeptides with molecular weights near 48000 (48K) and 47000 (47K), as judged by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. All four sizes of polypeptides were synthesized in similar relative proportions as found in vivo in a rabbit reticulocytes lysate supplemented with delta-crystallin mRNA isolated from the embryonic duck lens. Synthesis of the 48K and 47K delta-crystallin polypeptides was differentially reduced in duck lenses cultured in the presence of ouabain. This is similar to the differential reduction of synthesis of the lower molecular weight delta-crystallin peptides in embryonic chicken lenses demonstrated previously. R loops formed between duck or chicken delta-crystallin mRNA and a cloned chicken delta-crystallin cDNA and heteroduplexes formed between duck or chicken delta-crystallin mRNA and cloned chicken genomic DNAs containing delta-crystallin sequences showed that, except for the putative 5' leader sequence, the duck and chicken delta-crystallin mRNAs have extremely similar nucleotide sequences. These data indicate considerable conservation of delta-crystallin throughout the approximately 100 million years of divergence between ducks and chickens. The findings also suggest a possible relationship between the structure of delta-crystallin mRNA and the differential reduction in synthesis of the lower molecular weight delta-crystallin polypeptides in ouabain-treated lenses of ducks and chickens.  相似文献   

15.
Delta crystallins and their nucleic acids   总被引:15,自引:0,他引:15  
  相似文献   

16.
Previous studies have shown that there are 2 similar delta-crystallin genes (delta 1 and delta 2) and at least 2 delta-crystallin polypeptides in the chicken eye lens. We show here that both delta-crystallin polypeptides can be synthesized from mRNA transcribed in vitro from a cloned delta 1-crystallin cDNA. Both polypeptides co-migrate in SDS-urea-polyacrylamide electrophoresis with their authentic counterparts isolated from 15-day-old embryonic chicken lenses, and both react with sheep anti-chicken delta-crystallin serum. Screening nearly 900 delta-crystallin cDNA clones from a 15-day-old embryonic lens library with an oligonucleotide probe specific for exon 2 of the delta 2-crystallin gene failed to detect any delta 2 cDNA clones, indicating that the delta 2 gene produces little or no mRNA in the lens at this stage of development. Our results suggest that both of the observed delta-crystallin polypeptides are derived from mRNA transcribed from the delta 1 gene, with heterogeneity arising at the translational or co-translational level.  相似文献   

17.
【目的】从鸽子组织中克隆鸽子β-防御素1(AvBD1)基因,在大肠杆菌中表达重组鸽子AvBD1蛋白,测定其生物学特性。【方法】应用RT-PCR法从鸽子骨髓组织中扩增鸽子AvBD1基因,采用Real-time PCR法检测该基因在鸽子组织器官中的表达分布。将该基因亚克隆到大肠杆菌原核表达载体pProEX-HTa的EcoR I和Xho I双酶切位点上,构建重组表达质粒pProEX-pigeon AvBD1,将重组质粒进行诱导表达;对该重组蛋白进行纯化,通过菌落计数法测定其体外抗菌活性与理化特性。【结果】从鸽子骨髓组织中克隆到鸽子AvBD1基因,其cDNA大小为198 bp,编码65个氨基酸,经序列相似性分析,鸽子AvBD1与鸭AvBD1氨基酸序列相似性最高(81.5%)。鸽子AvBD1主要分布于免疫系统和消化系统组织中。Tricine-SDS-PAGE电泳结果表明,重组鸽子AvBD1蛋白分子量约8.8 kD,与预期大小一致。该重组蛋白具有广谱抗菌活性,高盐浓度显著降低其抗菌活性。此外,该重组蛋白的溶血活性极低。【结论】从鸽子骨髓组织中克隆到鸽子AvBD1基因,其主要分布在机体的免疫系统和消化系统中。该重组蛋白具有广谱抗菌活性,高盐浓度显著降低其抗菌活性,且该重组蛋白的溶血活性极低。  相似文献   

18.
Homology of delta crystallin and argininosuccinate lyase   总被引:1,自引:0,他引:1  
1. Delta crystallin, a major lens protein characteristic of birds and reptiles, is homologous to argininosuccinate lyase; 57% of the residues in chicken delta crystallin and human lyase are identical. 2. Even more similar (62% identical residues) to the human lyase is the sequence translated from the presumably inactive delta-2 gene of the delta crystallin locus. 3. As both delta crystallin and lyase are synthesized in birds only during the embryonic and juvenile stages, the persistence of delta crystallin in the adult lens appears to be paedomorphic. 4. Possible correlations of the origins of delta crystallin with other events in sauropsid evolution are proposed.  相似文献   

19.
Adenylosuccinate lyase was cloned by functional complementation of an Escherichia coli purB mutant using an avian liver cDNA expression library. The derived amino acid sequence is homologous to the bacterial purB-encoded adenylosuccinate lyase which catalyzes the same two steps in purine biosynthesis as the enzyme from animals. Avian adenylosuccinate lyase also shows regions of extensive sequence similarity to the urea cycle enzyme, argininosuccinate lyase. This homology suggests a similar mechanism for catalysis. Homology of adenylosuccinate and argininosuccinate lyases is intriguing because chickens do not utilize the urea cycle in nitrogen excretion. This is the first report of the cloning of a eukaryotic cDNA encoding adenylosuccinate lyase, and it affords a route to isolate the corresponding human gene which has been suggested to be defective in autistic children.  相似文献   

20.
Conservation of δ-crystallin gene structure between ducks and chickens   总被引:3,自引:0,他引:3  
A cloned chicken delta-crystallin cDNA was used to identify two putative delta-crystallin genes in the duck by Southern blot hybridization. A DNA fragment containing most of one of these genes was isolated from a library made in bacteriophage lambda Charon 28A containing genomic DNA from 14-day-old embryonic ducks. Electron microscopy, partial gene sequencing, primer extension analysis using duck mRNA, and comparison with the well-characterized chicken delta-crystallin genes suggest that our cloned duck delta-crystallin gene, like the chicken delta-crystallin genes, is 8-10 kb long and contains 17 exons. Hybridization and sequencing data show great similarity between the homologous 5' untranslated and coding exons of the duck and chicken delta-crystallin genes. Overall, the homologous introns also appear to have approximately 30% sequence similarity, and have been subject to deletion/insertion events. Our partial characterization of duck delta-crystallin gene sequences suggests that this avian and reptilian crystallin family has been conserved during evolution, as have the other crystallin gene families that are expressed in the eye lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号