首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenotypes of alloselective cytolytic lymphocytes of the rat are defined by staining of peritoneal cells of alloimmunized donors with monoclonal antibodies, sorting in a cytofluorometer and evaluating cytolytic capacity in a 51Cr-release assay. We demonstrate that alloimmunization of BN rats can result in either OX19+ (CD5+) or OX19- (CD5-) cytolytic alloselective lymphocytes and show that the OX19- (CD5-) cytolytic cells are OX34+ W3/25- (CD4-) OX8+ (CD8+) lymphocytes not exposing surface Ig. It is further demonstrated that the appearance of CD5+ and CD5- cytolytic alloselective lymphocytes are mutually exclusive; immunization with (WF X BN) F1 cells leading exclusively to appearance of OX19+ effector cells while immunization with WF cells leads to OX19- effector cells. Alloimmunization of WF rats only results in appearance of OX19+ cytolytic lymphocytes.  相似文献   

2.
The aim of this study was to analyze the differential effects of three anti-CD4 monoclonal antibodies (mAbs) (with distinct epitope specifities) in the treatment of rat adjuvant arthritis (AA) and on T-cell function and signal transduction. Rat AA was preventively treated by intraperitoneal injection of the anti-CD4 mAbs W3/25, OX35, and RIB5/2 (on days -1, 0, 3, and 6, i.e. 1 day before AA induction, on the day of induction [day 0], and thereafter). The effects on T-cell reactivity in vivo (delayed-type hypersensitivity), ex vivo (ConA-induced proliferation), and in vitro (mixed lymphocyte culture) were assessed. The in vitro effects of anti-CD4 preincubation on T-cell receptor (TCR)/CD3-induced cytokine production and signal transduction were also analyzed. While preventive treatment with OX35 and W3/25 significantly ameliorated AA from the onset, treatment with RIB5/2 even accelerated the onset of AA by approximately 2 days (day 10), and ameliorated the arthritis only in the late phase (day 27). Differential clinical effects at the onset of AA were paralleled by a differential influence of the mAbs on T-cell functions, i.e. in comparison with OX35 and W3/25, the 'accelerating' mAb RIB5/2 failed to increase the delayed-type hypersentivity (DTH) to Mycobacterium tuberculosis, increased the in vitro tumor necrosis factor (TNF)-alpha secretion, and more strongly induced NF-kappaB binding activity after anti-CD4 preincubation and subsequent TCR/CD3-stimulation. Depending on their epitope specificity, different anti-CD4 mAbs differentially influence individual proinflammatory functions of T cells. This fine regulation may explain the differential efficacy in the treatment of AA and may contribute to the understanding of such treatments in other immunopathologies.  相似文献   

3.
Anti-CD20 monoclonal antibodies have been successfully employed in the clinical treatment of non-Hodgkin's lymphomas in both unmodified and radiolabeled forms. Previous publications have demonstrated that the antitumor effects of unmodified anti-CD20 mAb are mediated by several mechanisms including antibody-dependent cellular cytotoxicity, complement-mediated cell lysis, and induction of apoptosis by CD20 cross-linking. In this report, we demonstrate induction of apoptosis by three anti-CD20 monoclonal antibodies [1F5, anti-B1, and C2B8 (Rituximab)]. The magnitude of apoptosis induction was greater with the chimeric Rituximab antibody than with the murine 1F5 and anti-B1 antibodies. Apoptosis could be enhanced with any of the antibodies by cross-linking with secondary antibodies (or Fc-receptor-bearing accessory cells). The signaling events involved in anti-CD20-induced apoptosis were investigated, including activation of protein tyrosine kinases, increases in intracellular Ca2+ concentrations, caspase activation, and cleavage of caspase substrates. Our results indicate that anti-CD20-induced apoptosis can be attenuated by PP1, an inhibitor of protein tyrosine kinases Lck and Fyn, chelators of extracellular or intracellular Ca2+, and inhibitors of caspases, suggesting that anti-CD20-induced apoptosis may involve modulation of these signaling molecules. We also demonstrated that varying the expression of Bcl-2 did not affect the magnitude of anti-B1-induced apoptosis, possibly because of the sequestering effects of other Bcl-2 family members, such as Bad. These studies identify several of the signal-transduction events involved in the apoptosis of malignant B cells that transpire following ligation of CD20 by anti-CD20 antibodies in the presence of Fc-receptor-expressing cells or secondary goat anti-(mouse Ig) antibodies and which may contribute to the tumor regressions observed in mouse models and clinical trials. Received: 27 May 1999 / Accepted: 1 October 1999  相似文献   

4.
T cells have an important role during the development of autoimmune diseases. In adjuvant arthritis, a model for rheumatoid arthritis, we found that the percentage of CD4+ T cells expressing the activation marker CD134 (OX40 antigen) was elevated before disease onset. Moreover, these CD134+ T cells showed a specific proliferative response to the disease-associated epitope of mycobacterial heat shock protein 60, indicating that this subset contains auto-aggressive T cells. We studied the usefulness of CD134 as a molecular target for immune intervention in arthritis by using liposomes coated with a CD134-directed monoclonal antibody as a drug targeting system. Injection of anti-CD134 liposomes subcutaneously in the hind paws of pre-arthritic rats resulted in targeting of the majority of CD4+CD134+ T cells in the popliteal lymph nodes. Furthermore, we showed that anti-CD134 liposomes bound to activated T cells were not internalized. However, drug delivery by these liposomes could be established by loading anti-CD134 liposomes with the dipalmitate-derivatized cytostatic agent 5'-fluorodeoxyuridine. These liposomes specifically inhibited the proliferation of activated CD134+ T cells in vitro, and treatment with anti-CD134 liposomes containing 5'-fluorodeoxyuridine resulted in the amelioration of adjuvant arthritis. Thus, CD134 can be used as a marker for auto-aggressive CD4+ T cells early in arthritis, and specific liposomal targeting of drugs to these cells via CD134 can be employed to downregulate disease development.  相似文献   

5.
The aim of this study was to analyze the differential effects of three anti-CD4 monoclonal antibodies (mAbs) (with distinct epitope specifities) in the treatment of rat adjuvant arthritis (AA) and on T-cell function and signal transduction. Rat AA was preventively treated by intraperitoneal injection of the anti-CD4 mAbs W3/25, OX35, and RIB5/2 (on days -1, 0, 3, and 6, i.e. 1 day before AA induction, on the day of induction [day 0], and thereafter). The effects on T-cell reactivity in vivo (delayed-type hypersensitivity), ex vivo (ConA-induced proliferation), and in vitro (mixed lymphocyte culture) were assessed. The in vitro effects of anti-CD4 preincubation on T-cell receptor (TCR)/CD3-induced cytokine production and signal transduction were also analyzed. While preventive treatment with OX35 and W3/25 significantly ameliorated AA from the onset, treatment with RIB5/2 even accelerated the onset of AA by approximately 2 days (day 10), and ameliorated the arthritis only in the late phase (day 27). Differential clinical effects at the onset of AA were paralleled by a differential influence of the mAbs on T-cell functions, i.e. in comparison with OX35 and W3/25, the 'accelerating' mAb RIB5/2 failed to increase the delayed-type hypersentivity (DTH) to Mycobacterium tuberculosis, increased the in vitro tumor necrosis factor (TNF)-α secretion, and more strongly induced NF-κB binding activity after anti-CD4 preincubation and subsequent TCR/CD3-stimulation. Depending on their epitope specificity, different anti-CD4 mAbs differentially influence individual proinflammatory functions of T cells. This fine regulation may explain the differential efficacy in the treatment of AA and may contribute to the understanding of such treatments in other immunopathologies.  相似文献   

6.
Experimental autoallergic sialadenitis (EAS) in the LEW rat is an induced autoimmune disease of the salivary tissues. EAS is characterized by a lymphocytic infiltration that consists of both CD4+ (helper/inducer T-cell subset) and CD8+ (cytotoxic/suppressor T-cell subset) T cells and results in the immune-mediated destruction of the exocrine salivary glands. To investigate the role that each of the T-cell subsets may have in the pathogenesis of EAS, LEW rats sensitized with WF SMG homogenate were injected with monoclonal antibodies to deplete or inactivate, in vivo, the CD4, CD5 (OX19; pan T lymphocyte), CD8, or RT6 (70% of peripheral T cells) T-cell populations. Treatment with the OX8 (CD8), OX19 (CD5), or W3/25 (CD4) only partially reduced in vivo the respective splenic or lymph node T-cell subsets when analyzed on Day 14, while treatment with DS4.23 (anti-RT6) resulted in greater than 95% depletion of RT6+ spleen and lymph node T cells. EAS incidence and severity was significantly reduced in the W3/25 (CD4) treatment group (11% incidence rate; histologic score 1.0) as compared to medium-injected controls (88% incidence rate; histologic score 2.9). Although the incidence and severity of EAS in the OX19 (71%; histologic score 1.7), OX8 (55%; histologic score 1.7), and RT6 (67%; histologic score 1.6) treatment groups appeared decreased, the reduction was not statistically significant. These results provide evidence that CD4+ T cells have an important role in EAS induction and demonstrate that in vivo treatment with anti-CD4 can ameliorate and/or prevent EAS in the LEW rat.  相似文献   

7.
MRC OX35, an anti-CD4 mAb, was used to treat high responder Wistar Furth (W/F) (RT1u) and low responder DA (RT1a) rats which had been grafted with directly vascularized hearts from PVG (RT1c) rats across a full MHC plus non-MHC incompatibility. Four doses of mAb at 7 mg/kg given in the first 2 wk postgrafting induced indefinite graft survival (greater than 150 days) in DA hosts, but only delayed rejection to 18 to 42 days in W/F as compared to rejection times of 6 to 8 days in untreated rats. The extension of MRC OX35 treatment to 6 wk in W/F rats induced indefinite graft survival in three of six rats. During treatment MRC OX35 therapy only partially depleted CD4+ cells, and all circulating CD4+ cells were coated with MRC OX35. The capacity of naive CD4+ and CD8+ cells from W/F and DA to be activated to PVG alloantigen was compared both in vitro in an MLC assay and in vivo by an adoptive transfer assay of their capacity to restore rejection of PVG heart grafts in irradiated syngeneic hosts. CD4+ cells from both W/F and DA proliferated in MLC and restored graft rejection. W/F CD8+ cells both proliferated in MLC and restored rejection, but DA CD8+ cells neither proliferated nor reconstituted rejection. Examination of lymphocytes from MRC OX35 treated hosts with long-surviving grafts showed that they were neither depleted of CD4+ T cells nor did they lack the capacity to proliferate to PVG Ag in MLC, this response being similar to that to third-party Ag or by naive lymphocytes. Compared to first-set rejection, PVG skin graft rejection was delayed 2 to 3 days in W/F and 10 to 12 days in DA rats with long-surviving grafts after MRC OX35 therapy, whereas they rejected third-party skin grafts in first-set tempo. These studies show that differences in graft survival in anti-CD4 treated low and high responder strains may be due to the inherent capacity of CD8+ cells to be activated to effect rejection independent of CD4+ cells in W/F but not in DA. In those hosts that accept grafts, there is no evidence of clonal deletion, but there appears to be a form of unresponsiveness akin to that induced in adult rats by other immunosuppressive therapies that protects the graft from rejection.  相似文献   

8.
We utilized a model of experimental interstitial nephritis induced by renal tubular antigen in complete Freund's adjuvant to examine a mechanism of immunologic tolerance produced by priming immunization with tubular antigen in incomplete Freund's adjuvant. Brown Norway rats primed with tubular antigen in incomplete adjuvant do not develop significant nephritis after challenge with antigen in complete adjuvant, and this tolerance can be transferred to naive recipients with donor T cells. These T cells also specifically suppress a delayed-type hypersensitivity response to soluble tubular antigen in recipients immunized to produce disease. This suppression is MHC-restricted and is mediated by OX8+ T cells which bind antigen and bear idiotypes cross-reactive with those on antibodies eluted from the tubular basement membrane. Despite the suppression of histologic disease, tolerized animals were able to produce significant titers of antibodies to tubular basement membrane. Our findings demonstrate an additional strategy for altering the natural history of immune-mediated renal disease, and further refine the characterization of the suppressive effect produced by incomplete Freund's adjuvant.  相似文献   

9.
The monoclonal antibodies, anti-2H4(CD45RA), and anti-4B4(CD29), along with UCHL1-(CD45RO), identify reciprocal populations of CD4 cells with distinct suppressor inducer (CD45RA+CD29-CD45RO-) and helper inducer (CD45RA-CD29+CD45RO+) functions. Although the CD8+ population is known to contain precytotoxic, cytotoxic, suppressor, and some natural killer cells, the exact phenotypic identities of these functional CD8 subsets has not been established. In this study, we tried to determine whether these monoclonal antibodies could distinguish functionally distinct subsets of cells within the CD8+ population. For this purpose, whole T cells or fractionated T cells were sensitized with irradiated allogeneic non-T cells for 6 days, following which, CD8+ or CD8+CD11b- cells were isolated and cellular functions such as suppressor, killer precursor, and killer effector activity were assessed. The results showed that both class I-restricted alloantigen-specific killer effector and killer precursor cells belonged to the CD8+CD11b-CD45RA-CD29+ population. Moreover, these killer effector cells expressed the CTL-associated S6F1 molecule, an epitope of the LFA-1 antigen. In contrast, suppressor effector cells belonged to the CD8+CD11b-CD45RA+CD29- cell population. Although the UCHL1 antigen has been reported to define the CD4+CD29+ helper inducer cell, over 90% of allo-activated CD8+ cells expressed this antigen, whereas only 40-60% of these cells expressed either CD45RA or CD29 antigens. These results suggest that anti-CD45RA and anti-CD29 antibodies may provide useful tools for distinguishing between suppressor effector versus killer effector and killer precursor cells within the CD8+CD11b- population.  相似文献   

10.
L Stitz  M Sobbe    T Bilzer 《Journal of virology》1992,66(6):3316-3323
Borna disease is a virus-induced, immunopathological encephalomyelitis in which CD4+ cells and macrophages dominate the pathological picture. However, significant numbers of CD8+ cells have been morphologically identified in perivascular infiltrates as well. To determine the contribution of different T-cell subsets to the pathogenesis of Borna disease, virus-infected rats were treated with monoclonal antibodies specific for CD4+ and CD8+ cells. Both types of monoclonal antibodies were able to significantly decrease or even prevent the local inflammatory reaction in the brain if given early during the infection. However, CD8-specific monoclonal antibodies appeared to be more effective than antibodies directed against CD4+ cells. Treatment initiated 4 days postinfection did not result in inhibition of encephalitis and disease. Virus titers in the brain of infected rats treated with T-cell-specific antibodies did not differ from titers in untreated infected control animals. The results indicate an important functional role of CD8+ cells, in addition to CD4+ cells, in the pathogenesis of Borna disease.  相似文献   

11.
A major goal of the transplant field is to selectively tolerize only those donor T cells recognizing host alloantigen and mediating graft-vs-host disease (GVHD). Recently, we described an ex vivo approach in which the blockade of the CD40 ligand (CD40L):CD40 costimulatory pathway in bulk MLR cultures induces donor CD4+ T cells to become specifically tolerant to MHC class II-disparate alloantigenic-bearing stimulators, resulting in a profound reduction in GVHD generation in vivo. In studies presented in this work, we investigated the ex vivo requirements for tolerance induction. We found that CD4+ T cells become profoundly more hyporesponsive to alloantigen restimulation with prolonged culture duration such that 7 to 10 but not 4 days is needed to achieve maximum alloantigen hyporesponsiveness as assessed in secondary MLR cultures and GVHD generation. By day 7, both primed and tolerized cells had substantially increased blastogenesis and CD25 expression. Primed but not tolerized cells substantially down-regulated L-selectin expression, indicating that the tolerized cells do not become fully Ag experienced. Both Th1 and Th2 cytokine production is severely impaired by CD40L:CD40 blockade. Analysis of culture supernatants and results from IL-4 and IL-10 knockout mice indicated that GVHD prevention was not mediated by a skewing toward a Th2 phenotype. The addition of IL-4 to the cultures as a survival factor precluded the induction of tolerance in the anti-CD40L-cultured cells. These data provide further impetus for the ex vivo use of anti-CD40L mAb to block GVHD generation.  相似文献   

12.
Peripheral arthritis is produced in BALB/c mice after hyperimmunization with the cartilage proteoglycan aggrecan (PG). Adoptive transfer studies have suggested the roles of T cells including CD8+ T cells in the disease process. To evaluate the roles of CD4+ and CD8+ T cell subsets in vivo in the induction of this disease by immunization, PG-immunized mice were treated with isotype-controlled rat IgG2b monoclonal anti-CD4 or anti-CD8 antibodies, or were left untreated. CD4+ T cell depletion resulted in total inhibition of the disease with markedly decreased anti-PG antibody responses. CD8+ T cell depletion, however, significantly enhanced the severity of the disease without affecting peak anti-PG antibodies, as compared to the control mice. These results demonstrate a crucial role for CD4+ T cells in the pathogenesis of this disease. However, CD8+ T cells do not seem to be required for the induction of arthritis by immunization but instead may play an immunoregulatory role.  相似文献   

13.
A study of the immunosuppressive systems of rats has been conducted with special attention to whether suppressor cells can be induced to down-regulate the efferent limb of contact sensitivity. Contact sensitivity (CS)1 was induced in DA rats 5 days after immunization with trinitrochlorobenzene (TNCB). Intravenous pretreatment of naive rats with TNP-coupled syngeneic spleen cells 7 days before sensitization suppressed the induction of CS by 60%. Suppression of the inductive phase of CS could be transferred adoptively into syngeneic rats with spleen cells of such tolerized animals. Cell fractionation studies showed the OX8+ (CD8) T cell population (cytotoxic/suppressor) was responsible for the suppression in the afferent phase of CS. Such cells were incapable of suppressing preexisting CS. To investigate whether suppression could be induced for the efferent phase, spleen and peritoneal exudate cells (PEC) from rats tolerized by administering TNP-spleen cells iv plus epidermal paintings with TNCB were adoptively transferred into recipients sensitized 4 days earlier. Both spleen cells and PEC suppressed the efferent phase of CS but PEC did so more efficiently. Separation of splenic cells revealed the suppressors to be CD8+ T cells. Furthermore, separation of PEC into plastic adherent and nonadherent cells showed the nonadherent (T cell enriched) cells to be noneffective alone. The adherent subpopulation conveyed suppression but did so more effectively upon addition of the T cells. Thus, T cells and macrophages may operate in concert to achieve suppression of the efferent limb of CS. PEC from tolerized rats suppressed performed CS of any specificity but only after the suppressor cells were triggered with the same antigen that induced them. Since both the afferent and efferent phases of CS have now been shown to be suppressable, two separate suppressor mechanisms may be operable in rats.  相似文献   

14.
Experimental autoimmune thyroiditis (EAT), a model for Hashimoto's thyroiditis, is a T cell-mediated disease inducible with mouse thyroglobulin (mTg). Pretreatment with mTg, however, can induce CD4+ T cell-mediated tolerance to EAT. We demonstrate that CD4+CD25+ regulatory cells are critical for the tolerance induction, as in vivo depletion of CD25+ cells abrogated established tolerance, and CD4+CD25+ cells from tolerized mice suppressed mTg-responsive cells in vitro. Importantly, administration of an agonistic CD137 monoclonal antibody (mAb) inhibited tolerance development, and the mediation of established tolerance. CD137 mAb also inhibited the suppression of mTg-responsive cells by CD4+CD25+ cells in vitro. Signaling through CD137 likely resulted in enhancement of the responding inflammatory T cells, as anti-CD137 did not enable CD4+CD25+ T cells to proliferate in response to mTg in vitro.  相似文献   

15.
Skin allograft maintenance in a new synchimeric model system of tolerance.   总被引:9,自引:0,他引:9  
Treatment of mice with a single donor-specific transfusion plus a brief course of anti-CD154 mAb uniformly induces donor-specific transplantation tolerance characterized by the deletion of alloreactive CD8+ T cells. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. To analyze the mechanisms underlying tolerance induction, maintenance, and failure in euthymic mice we created a new analytical system based on allo-TCR-transgenic hemopoietic chimeric graft recipients. Chimeras were CBA (H-2(k)) mice engrafted with small numbers of syngeneic TCR-transgenic KB5 bone marrow cells. These mice subsequently circulated a self-renewing trace population of anti-H-2(b)-alloreactive CD8+ T cells maturing in a normal microenvironment. With this system, we studied the maintenance of H-2(b) allografts in tolerized mice. We documented that alloreactive CD8+ T cells deleted during tolerance induction slowly returned toward pretreatment levels. Skin allograft rejection in this system occurred in the context of 1) increasing numbers of alloreactive CD8+ cells; 2) a decline in anti-CD154 mAb concentration to levels too low to inhibit costimulatory functions; and 3) activation of the alloreactive CD8+ T cells during graft rejection following deliberate depletion of regulatory CD4+ T cells. Rejection of healed-in allografts in tolerized mice appears to be a dynamic process dependent on the level of residual costimulation blockade, CD4+ regulatory cells, and activated alloreactive CD8+ thymic emigrants that have repopulated the periphery after tolerization.  相似文献   

16.
The deletion of CD4- and CD8-double-positive (DP) cells in the thymus after treatment with anti-CD3 antibodies has long been considered as a useful model for clonal deletion during T cell development, although it was reported that DP cell death was not observed in neonates where self-tolerance should be developing. We dealt with the cellular basis of this enigmatic phenomenon in this report. Due to the similar susceptibility to the antibody-treatment in vitro between neonatal and adult thymocytes, critical factors may be outside rather than within the thymus. Indeed, newborn thymus lobes transplanted into recipients of different ages showed an increased susceptibility to the thymo-toxicity as the age of the recipient increased. The thymo-toxicity seems to be based on the adrenal function of glucocorticoid (GC) synthesis, because administration of an inhibitor of GC synthesis significantly reduced the DP cell death by the antibody-treatment. Finally, adrenalectomy completely prevented DP cell death by anti-CD3 antibodies in adult mice. Therefore, the thymocyte death by anti-CD3 antibodies in vivo may not be due to the T cellreceptor mediated selection in the thymus.  相似文献   

17.
The aim of this study was to analyze the differential effects of three anti-CD4 monoclonal antibodies (mAbs) (with distinct epitope specifities) in the treatment of rat adjuvant arthritis (AA) and on T-cell function and signal transduction. Rat AA was preventively treated by intraperitoneal injection of the anti-CD4 mAbs W3/25, OX35, and RIB5/2 (on days -1, 0, 3, and 6, i.e. 1 day before AA induction, on the day of induction [day 0], and thereafter). The effects on T-cell reactivity in vivo (delayed-type hypersensitivity), ex vivo (ConA-induced proliferation), and in vitro (mixed lymphocyte culture) were assessed. The in vitro effects of anti-CD4 preincubation on T-cell receptor (TCR)/CD3-induced cytokine production and signal transduction were also analyzed. While preventive treatment with OX35 and W3/25 significantly ameliorated AA from the onset, treatment with RIB5/2 even accelerated the onset of AA by approximately 2 days (day 10), and ameliorated the arthritis only in the late phase (day 27). Differential clinical effects at the onset of AA were paralleled by a differential influence of the mAbs on T-cell functions, i.e. in comparison with OX35 and W3/25, the 'accelerating' mAb RIB5/2 failed to increase the delayed-type hypersentivity (DTH) to Mycobacterium tuberculosis, increased the in vitro tumor necrosis factor (TNF)-α secretion, and more strongly induced NF-κB binding activity after anti-CD4 preincubation and subsequent TCR/CD3-stimulation. Depending on their epitope specificity, different anti-CD4 mAbs differentially influence individual proinflammatory functions of T cells. This fine regulation may explain the differential efficacy in the treatment of AA and may contribute to the understanding of such treatments in other immunopathologies.  相似文献   

18.
The lytic activity of most CD8+ MHC class I allospecific CTL generated in vitro can be inhibited by anti-CD8 antibodies. Such inhibition has led to hypotheses that CD8/class I interactions normally contribute to the triggering of CTL with low or moderate avidity Ag-specific TCR by providing those CTL with auxiliary binding avidity. However, CD8 has also been proposed to play an active signaling role in T cell activation. We have recently reported that multivalent cross-linking of CD8 on CTL precursors in MLC does appear to mediate activation signals, and induces the generation of CD8+ MHC class I allospecific CTL whose lytic activity cannot be blocked by anti-CD8 antibodies. In our present study, we have further characterized such anti-CD8 uninhibitable effector cells. These CTL are resistant to blocking of their lytic function by anti-Lyt-3 mAb as well as anti-Lyt-2 mAb, but remain sensitive to blocking by anti-LFA-1 mAb, indicating that they do use non-CD8 cell adhesion molecules during target cell recognition and lysis. As a consequence of mAb-induced multivalent CD8 cross-linking during their generation, anti-CD8 uninhibitable CTL significantly reduce their cell surface expression of CD8, which permits their identification and facilitates their purification from heterogeneous MLC populations. Such anti-CD8 uninhibitable effector cells can be maintained as stable CTL lines, in the absence of anti-CD8 mAb after the initial induction period. The in vitro generation of anti-CD8 uninhibitable CTL, which may be highly enriched for cells bearing high affinity TCR, could represent a new experimental approach to studies of TCR gene usage and repertoire, as well as a potentially important strategy for the deliberate generation of high affinity effector cells for adoptive immunotherapy.  相似文献   

19.
BACKGROUND: Our laboratory has previously shown that adoptive transfer of in vitro-expanded autologous purified polyclonal CD4(+) T cells using anti-CD3/CD28-coated beads induced antiviral responses capable of controlling SIV replication in vivo. METHODS: As CD4(+) T cells comprise several phenotypic and functional lineages, studies were carried out to optimize the in vitro culture conditions for maximal CD4(+) T-cell expansion, survival and delineate the phenotype of these expanded CD4(+) T cells to be linked to maximal clinical benefit. RESULTS AND CONCLUSIONS: The results showed that whereas anti-monkey CD3gamma/epsilon was able to induce T-cell proliferation and expansion in combination with antibodies against multiple co-stimulatory molecules, monkey CD3epsilon cross reacting antibodies failed to induce proliferation of macaque CD4(+) T cells. Among co-stimulatory signals, anti-CD28 stimulation was consistently superior to anti-4-1BB, CD27 or ICOS while the use of anti-CD154 failed to deliver a detectable proliferation signal. Increasing the relative anti-CD28 co-stimulatory signal relative to anti-CD3 provided a modest enhancement of expansion. Additional strategies for optimization included attempts to neutralize free radicals, enhancement of glucose uptake by T cells or addition of T-cell stimulatory cytokines. However, none of these strategies provided any detectable proliferative advantage. Addition of 10 autologous irradiated feeder cells/expanding T cell provided some enhancement of expansion; however, given the high numbers of T cell needed, this approach was deemed impractical and costly, and lower ratios of feeder to expanding T cells failed to provide such benefit. The most critical parameter for efficient expansion of purified CD4(+) T cells from multiple monkeys was the optimization of space and culture conditions at culture inception. Finally, anti-CD3/28-expanded CD4(+) T cells uniformly exhibited a central memory phenotype, absence of CCR5 expression, marked CXCR4 expression in vitro, low levels of caspase 3 but also of Bcl-2 expression.  相似文献   

20.
Pristane-induced arthritis (PIA) in rats, a model for rheumatoid arthritis (RA), is a T cell-dependent disease. However, pristane itself is a lipid and unable to form a stable complex with a MHC class II molecule. Therefore, the specificity and function of the T cells in PIA are as unclear as in rheumatoid arthritis. In this study, we show that activated CD4+ alphabetaT cells, which target peripheral joints, transfer PIA. The pristane-primed T cells are of oligo or polyclonal origin as determined by their arthritogenicity after stimulation with several mitogenic anti-TCRVbeta and anti-TCRValpha mAbs. Arthritogenic cells secreted IFN-gamma and TNF-alpha (but not IL-4) when stimulated with Con A in vitro, and pretreatments of recipient rats with either anti-IFN-gamma or a recombinant TNF-alpha receptor before transfer ameliorated arthritis development. Most importantly, we show that these T cells are MHC class II restricted, because treatment with Abs against either DQ or DR molecules ameliorates arthritis development. The MHC class II restriction was confirmed by transferring donor T cells to irradiated recipients that were syngenic, semiallogenic, or allogenic to MHC class II molecules, in which only syngenic and semiallogenic recipients developed arthritis. These data suggest that the in vivo administration of a non-antigenic adjuvant, like pristane, activates CD4+ alphabetaT cells that are MHC class II restricted and arthritogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号