首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) Combination of techniques for extraction and purification of histidine rich protein established by several investigators were employed for comparison of histidine-rich protein in granular cells and cornified cells of newborn rats. (2) Histidine-rich protein extracted from the same cell fraction by two different techniques either in 1 M potassium phosphate buffer (Ugel) or in 4 M urea (Dale) showed identical elution profiles on CM 52 cellulose ion exchange chromatography and the same SDS polyacrylamide gel electrophoretic patterns. (3) Histidine-rich protein from granular cells contained polypeptides of larger molecular sizes than those in histidine-rich protein from cornfield cells, although amino acid composition of the two histidine-rich protein was non-distinguishable (histidine residue was more than 7%). (4) Antibodies raised in rabbits by injection of histidine rich protein from granular cells and that from cornfield cells immunologically cross-reacted. Furthermore, the antisera were found to be reactive over both keratohyalin granules and cornified cells, but not epidermal cells of the lower strata.  相似文献   

2.
Mucosal surfaces of the vagina are the portals for heterosexual transmission of HIV-1 and therefore play a fundamental role in the pathogenesis of primary infection. In the search for direct biological evidence for the role of human vaginal fluid in innate host defense, we characterized the anti-HIV-1 function of cationic polypeptides within minimally manipulated vaginal fluid. In the current study we revealed that vaginal fluid confers intrinsic anti-HIV-1 properties against both X4 and R5 strains of HIV-1 and could protect against HIV-1 infection and reduce proviral genome integration in organotypic cultures of human cervicovaginal tissue. The majority of this activity was contained in the cationic polypeptide fraction, and the depletion of cationic polypeptides using a selective cation exchange resin ablated most of the intrinsic activity against HIV-1. By adding the cationic polypeptide fraction to depleted vaginal fluid, we were able to restore activity against HIV-1. Using a proteomic approach, we identified 18 cationic polypeptides within vaginal fluid, nearly all of which are either known antimicrobials or have other purported roles in host defense. Interestingly, physiologic concentrations of 13 of the cationic polypeptides were not active alone against HIV-1, yet in concert they partially restored the anti-HIV-1 activity of cation-depleted vaginal fluid. These results suggest that synergism between cationic polypeptides is complex, and full anti-HIV-1 activity probably involves the aggregate of the cationic peptides and proteins in vaginal fluid.  相似文献   

3.
4.
We have developed a group of water-soluble drug conjugates in which daunomycin (Dau) is coupled to cationic, amphoteric or anionic branched polypeptides and a new conjugate containing a cationic polypeptide carrier modified with a cell penetrating octaarginine. We investigated in vitro physiological activity of these conjugates in several aspects: in vitro cytotoxicity and cytostatic effect, adhesion and cellular uptake were examined on murine (J774 and L1210) and human (MonoMac6 and HL-60) leukemia cell lines and on murine bone marrow derived macrophages. We found that these processes are dependent on the properties of the carrier, on experimental conditions like concentration and incubation time. We found that attachment of polypeptide and cell penetrating peptide to the bioactive agent, depending on the cell line, could significantly improve the antitumor activity of the drug.  相似文献   

5.
Biohybrid antennas built upon chromophore–polypeptide conjugates show promise for the design of efficient light-capturing modules for specific purposes. Three new designs, each of which employs analogs of the β-polypeptide from Rhodobacter sphaeroides, have been investigated. In the first design, amino acids at seven different positions on the polypeptide were individually substituted with cysteine, to which a synthetic chromophore (bacteriochlorin or Oregon Green) was covalently attached. The polypeptide positions are at –2, –6, –10, –14, –17, –21, and –34 relative to the 0-position of the histidine that coordinates bacteriochlorophyll a (BChl a). All chromophore–polypeptides readily formed LH1-type complexes upon combination with the α-polypeptide and BChl a. Efficient energy transfer occurs from the attached chromophore to the circular array of 875 nm absorbing BChl a molecules (denoted B875). In the second design, use of two attachment sites (positions –10 and –21) on the polypeptide affords (1) double the density of chromophores per polypeptide and (2) a highly efficient energy-transfer relay from the chromophore at –21 to that at –10 and on to B875. In the third design, three spectrally distinct bacteriochlorin–polypeptides were prepared (each attached to cysteine at the –14 position) and combined in an ~1:1:1 mixture to form a heterogeneous mixture of LH1-type complexes with increased solar coverage and nearly quantitative energy transfer from each bacteriochlorin to B875. Collectively, the results illustrate the great latitude of the biohybrid approach for the design of diverse light-harvesting systems.  相似文献   

6.
The histidine-rich peptides of the LAH4 family were designed using cationic antimicrobial peptides such as magainin and PGLa as templates. The LAH4 amphipathic helical sequences exhibit a multitude of interesting biological properties such as antimicrobial activity, cell penetration of a large variety of cargo and lentiviral transduction enhancement. The parent peptide associates with lipid bilayers where it changes from an orientation along the membrane interface into a transmembrane configuration in a pH-dependent manner. Here we show that LAH4 adopts a transmembrane configuration in fully saturated DMPC membranes already at pH 3.5, i.e. much below the pKa of the histidines whereas the transition pH in POPC correlates closely with histidine neutralization. In contrast in POPG membranes the in-planar configuration is stabilized by about one pH unit. The differences in pH can be converted into energetic contributions for the in-plane to transmembrane transition equilibrium, where the shift in the transition pH due to lipid saturation corresponds to energies which are otherwise obtained by the exchange of several cationic with hydrophobic residues. A similar dependence on lipid saturation has also been observed when the PGLa and magainin antimicrobial peptides interact within lipid bilayers suggesting that the quantitative evaluation presented in this paper also applies to other membrane polypeptides.  相似文献   

7.
Two polypeptides, isolated to electrophoretic homogeneity from Russet Burbank potato tubers, are powerful inhibitors of pancreatic serine proteinases. One of the inhibitors, called polypeptide trypsin inhibitor, PTI, has a molecular weight of 5100, and inhibits bovine trypsin. The inhibitor is devoid of methionine, histidine, and tryptophan and contains eight half-cystine residues as four disulfide bridges. The second inhibitor, polypeptide chymotrypsin inhibitor II, PCI-II, has a molecular weight of 5700 and powerfully inhibits chymotrypsin. This inhibitor is also devoid of methionine and tryptophan but it contains only six of half-cystines as three disulflde bonds. Both polypeptides strongly inhibit pancreatic elastase. In immunological double diffusion assays, polypeptide trypsin inhibitor and polypeptide chymotrypsin inhibitor II exhibit a high degree of immunological identity (a) with each other, (b) with a polypeptide chymotrypsin inhibitor (PCI-I, Mr 5400) previously isolated from potato tubers, and (c) with inhibitor II, a larger (monomer Mr ~ 12,000) inhibitor of both trypsin and chymotrypsin which has also been previously isolated from potato tubers. The four polypeptide proteinase inhibitors now isolated from Russet Burbank potato tubers cumulatively inhibit all five major intestinal digestive endo- and exoproteinases of animals. The inhibitors are thought to be antinutrients that are present as part of the natural chemical defense mechanisms of potato tubers against attacking pests.  相似文献   

8.
Chronic administration of isoproterenol (IPR) results in a marked hypertrophy and in the induction of a group of putative proline-rich polypeptides in the mouse parotid glands. Some of these polypeptides (pps C-G) have been considered as molecular markers of the parotid gland enlargement. Given the secretory character of polypeptides C-G, the polypeptide composition of mouse saliva was used to monitor the IPR-induced salivary gland hypertrophy. Whole saliva was collected after an oral administration of pilocarpine (PIL). Under those conditions, PIL provoked a massive salivary secretion both in normal control mice and during the whole course of the IPR-induced gland enlargement. Striking changes in the polypeptide composition of saliva obtained from chronically IPR-stimulated animals were observed. Those changes consisted basically in the appearance and progressive increase in concentration of parotid polypeptides C-G and in the progressive diminution in concentration of a couple of normal salivary polypeptides (polypeptides A-B). The appearance of new polypeptides in saliva could be established unequivocally within the 24 h following the trophic adrenergic stimulation. On the other hand, salivary polypeptides induced in response to a single administration of IPR could be demonstrated as late as 7-9 days after the stimulation. Accordingly, detection of parotid polypeptides C-G in PIL-produced saliva obtained from IPR-stimulated mice has proved to be a highly advantageous method to evaluate salivary gland hypertrophy both at very early stages after the trophic stimulation and late after the occurrence of the trophic episode.  相似文献   

9.
Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of an acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.  相似文献   

10.
Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3) was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs). HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2) pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.  相似文献   

11.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H158WHD161. To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

12.
Redlinger T  Gantt E 《Plant physiology》1981,68(6):1375-1379
Purified phycobilisomes of Porphyridium cruentum were solubilized in sodium dodecyl sulfate and resolved by sodium dodecyl sulfate-acrylamide gel electrophoresis into nine colored and nine colorless polypeptides. The colored polypeptides accounted for about 84% of the total stainable protein, and the colorless polypeptides accounted for the remaining 16%. Five of the colored polypeptides ranging in molecular weight from 13,300 to 19,500 were identified as the α and β subunits of allophycocyanin, R-phycocyanin, and phycoerythrin. Three others (29,000-30,500) were orange and are probably related to the γ subunit of phycoerythrin. Another colored polypeptide had a molecular weight of 95,000 and the characteristics of long wavelength-emitting allophycocyanin. Sequential dissociation of phycobilisomes, and analysis of the polypeptides in each fraction, revealed the association of a 32,500 molecular weight colorless polypeptide with a phycoerythrin fraction. The remaining eight colorless polypeptides were in the core fraction of the phycobilisome, which also was enriched in allophycocyanin. In addition, the core fraction was enriched in a colored 95,000 dalton polypeptide. Inasmuch as a polypeptide with the same molecular weight is found in thylakoid membranes (free of phycobilisomes), it is suggested that this polypeptide is involved in anchoring phycobilisomes to thylakoid membranes.  相似文献   

13.
In amphibian epidermis mucus is thought to constitute the matrix material that links keratin filaments present in cells of the corneous layer. As contrast in mammals, and perhaps in all amniotes, histidine-rich proteins form the matrix material. In order to address the study of matrix molecules in the epidermis of the first tetrapods, the amphibians, an autoradiographic and electrophoretic study has been done after administration of tritiated histidine. Histological analysis of amphibian epidermis shows that histidine is taken up in the upper intermediate and replacement layers beneath the corneous layer. Ultrastructural autoradiographic analysis reveals that electron-dense interkeratin material is labeled after administration of tritiated histidine. Electrophoretic analysis of the epidermis shows labeled proteic bands at 58-61, 50-55, 40-45, and some only weakly labeled at 30 and 24-25 kDa at 4-48 hours after injection of tritiated histidine. Keratin markers show that bands at 40-61 kDa contain keratins. Most histidine is probably converted into other amino acids such as glutamate and glutamine that are incorporated into newly synthetized keratins. However, non-keratin histidine-incorporating proteins within the keratin range could also be formed. The bands at 30 and 24-25 kDa suggest that these putative histidine-rich proteins are not keratins. In fact, their molecular weigh is below the range of that for keratins. In contrast with the mammalian condition, but resembling reports for lizard epidermis, putative histidine-rich proteins in amphibians have no high molecular weight precursor. Although filaggrin is not detectable by immunofluorescence in sections of amphibian epidermis, protein extraction, electrophoresis and immunoblotting are more sensitive. In the epidermis of toad and frog, but only occasionally in that of newt, filaggrin cross-reactive proteic bands are seen at 50-55, 40-45, and sometimes at 25 kDa. This suggests that after extraction and unmasking of reactive sites in the epidermis of more terrestrial amphians (anurans), some HRPs with filaggrin-like cross-reactivity are present. The overlap that exists at 50-55 kDa between filaggrin-positive and AE2-positive keratins, but not that at 40-45 kDa further indicate that non-keratin, filaggrin-like proteins may be present in anuran epidermis. The present study suggests for the first time that very small amounts of histidine-rich proteins are produced among keratin filaments in upper intermediate, replacement and corneous layers of amphibian epidermis. Although the molecular composition of these proteins is unknown, precluding understanding of their relationship to those of mammals and reptiles, these cationic proteins might have originated in conjunction with the formation of a horny layer during the adaptation to land during the Carboniferous and were possibly refined later in the epidermis of amniotes.  相似文献   

14.
Sigrid M. Klein  Leo P. Vernon 《BBA》1977,459(3):364-375
The use of Triton X-100 to solubilize membrane fragments from Anabaena flos-aquae in conjunction with DEAE cellulose chromatography allows the separation of three green fractions. Fraction 1 is detergent-solubilized chlorophyll, and Fraction 2 contains one polypeptide in the 15 kdalton area. Fraction 3, which contains most of the chlorophyll and shows P-700 and photosystem I activity, shows by SDS gel electrophoresis varying polypeptide profiles which reflect the presence of four fundamental bands as well as varying amounts of other polypeptides which appear to be aggregates containing the 15 kdalton polypeptide. The four fundamental bands are designated Band I at 120, Band II at 52, Band III at 46, and Band IV at 15 kdaltons. Band I obtained using 0.1% SDS contains chlorophyll and P-700 associated with it. When this band is cut out and rerun, the 120 kdalton band is lost, but significant increases occur in the intensities of Bands II, III, and IV as well as other polypeptides in the 20–30 kdalton range.The use of 1% Triton X-100 coupled with sucrose density gradient centrifugation allows the separation of three green bands at 10, 25 and 40% sucrose. The 10% layer contains a major polypeptide which appears to be Band IV. The 25 and 40% layers show essentially similar polypeptide profiles, resembling Fraction 3 in this regard, except that the 40% layer shows a marked decrease in Band III. Treatment of the material layering at the 40% sucrose level with a higher (4%) concentration of Triton X-100 causes a loss (disaggregation) of the polypeptides occurring in the 60–80 kdalton region and an increase in the lower molecular weight polypeptides. Thus, aggregation of the lower molecular weight polypeptides accounts for the variability seen in the electrophoresis patterns. Possible relations of the principal polypeptides to the known photochemical functions in the original membrane are discussed.  相似文献   

15.
Successful gene therapy depends on the development of efficient, non-toxic gene delivery systems. To accomplish this objective, our laboratory has focused on solid-phase synthesized peptide carriers, in which the amino acid sequence can be varied precisely to augment intracellular DNA transport. We previously determined that linear and branched co-polymers of histidine and lysine in combination with liposomes enhanced the efficiency of gene transfection. In this study, we have modified two branched histidine-lysine (HK) peptides by adding a histidine-rich tail. In a variety of cell lines, this histidine-rich tail markedly improved transfection efficiency, presumably by increasing the buffering capacity of the polymer. One polymer with a histidine-rich tail, H2K4bT, compared favorably with the commonly used transfection agents. Together with modification of our transfection protocol, these improved HK peptides alone, without liposomes, are the effective carriers of plasmids into a variety of cells. We anticipate that branched HK peptides will continue to be developed as carriers of nucleic acids for in vitro and in vivo applications.  相似文献   

16.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H(158)WHD(161). To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

17.
Hairless mice were fed with a 10% amino acid mixture diet (control diet, 0.42% histidine content), the control diet without histidine (histidine-free diet), or the control diet rich in histidine (histidine-rich diet; histidine content, 4.2%) for 32 days. They were irradiated with UV light of 312 nm for 30 min, and skin samples were periodically taken for measuring the urocanic acid isomers. Total urocanic acid isomers were decreased by UV irradiation in all the three groups, the recovery being the fastest in the histidine-rich group. The percentage increase in cis-urocanic acid/total urocanic acid was quickly increased by UVB irradiation. The recovery of the ratio was slightly higher in the histidine-rich group, although the total urocanic acid level was higher in the histidine-rich group than in the others. Therefore, the absolute cis-urocanic acid content in the skin was almost the same among the three groups. These results indicate that the increased histidine intake strengthened UVB protection without any decrease in immune suppression.  相似文献   

18.
The neutral histidine-rich polypeptide (HRP) from human parotid secretion was isolated by ion-exchange and gel-filtration chromatography. The complete amino acid sequence determined by automated Edman degradation of the protein, tryptic and Staphylococcus aureus V8 protease peptides, and digestion with carboxypeptidase A is: (Formula: see text) where Pse represents phosphoserine. The polypeptide contains 38 residues and has Mr 4929. The charged amino acids predominate with 7 histidine, 4 arginine, 3 lysine, 3 aspartic acid, 3 glutamic acid residues, and 1 phosphoserine. Assuming minimal charge contributions from histidine and one negative charge from phosphoserine at pH 7, the net charge of HRP is balanced by an equal contribution of basic and acidic residues. Furthermore, the distribution of hydrophilic and hydrophobic residues along the polypeptide chain indicates that there is no structural polarity. The polypeptide lacks threonine, alanine, valine, cysteine, methionine, and isoleucine. HRP did not display sequence similarity with any protein sequence in the National Biomedical Research Foundation Data Bank. HRP is an active inhibitor of hydroxyapatite crystal growth from solutions supersaturated with respect to calcium phosphate salts and therefore must play a role in the stabilization of mineral-solute interactions in oral fluid. In addition, HRP is a potent inhibitor of Candida albicans germination and therefore may be a significant component of the antimicrobial host defense system in the oral cavity.  相似文献   

19.
Immunoprecipitation and two-dimensional gel electrophoresis analysis of the glutamine synthetase (GS) polypeptides (α and β) during Phaseolus vulgaris root development shows that the α polypeptide is the main component of the enzyme in the embryo and in up to 5 day old roots. From 5 days on, the β polypeptide becomes the root predominant GS monomer. The α/β ratio of the in vitro translated GS polypeptides from the total polysomal RNA isolated at different root ages correlates with the α/β ratio observed in the root extracts. These results suggest that the two root GS polypeptides are encoded by different mRNA species in Phaseolus vulgaris.  相似文献   

20.
The current status of histidine-rich proteins in malaria parasites with regard to their genomic organization, protein structure and function is discussed, one of such protein present in an avian malaria parasite Plasmodium lophurae contains about 73% histidine and called as HRP (histidine-rich protein). Among human malaria parasites, in Plasmodium falciparum, only three such proteins have been described, namely knob protein also known as knob associated histidine-rich protein (KP or KAHRP), soluble histidine-alanine rich protein (soluble HARP or PfHRP II) and small histidine-alanine rich protein (SHARP) containing 8, 35 and 30% histidine contents respectively. With rapid emergence of powerful tools in molecular biology the genes of all these histidine-rich proteins have been cloned and sequenced within a short period of time. The genomic organizations of all these proteins are very much similar to each other, in each case the gene contains a signal peptide coding sequence (exon 1) followed by an intron. This intron is followed by the main coding region (exon 2) which has no further intervening sequences. In the main coding region of each gene, the histidine-rich sequences start after 25-30 amino acids from N-terminal end (75-90 nucleotides from 5' in exon 2). All the three histidine-rich proteins of P. falciparum share some homology with the HRP of P. lophurae; they all cross react with anti HRP and incorporate higher amount of exogenous histidine. The relationship between KP and HRP resides in the repeated polyhistidine sequences, (His) 6-9, from the core of the multiple tandem repeats of HRP, whereas, the peptide Ala-His-His is commonly shared by HRP and two other proteins of P. falciparum (soluble HARP and SHARP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号