首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mapping of the photosynthetic membrane of Rhodobacter sphaeroides by atomic force microscopy (AFM) revealed a unique organization of arrays of dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) core complexes surrounded and interconnected by light-harvesting LH2 complexes (Bahatyrova, S., Frese, R. N., Siebert, C. A., Olsen, J. D., van der Werf, K. O., van Grondelle, R., Niederman, R. A., Bullough, P. A., Otto, C., and Hunter, C. N. (2004) Nature 430, 1058-1062). However, membrane regions consisting solely of LH2 complexes were under-represented in these images because these small, highly curved areas of membrane rendered them difficult to image even using gentle tapping mode AFM and impossible with contact mode AFM. We report AFM imaging of membranes prepared from a mutant of R. sphaeroides, DPF2G, that synthesizes only the LH2 complexes, which assembles spherical intracytoplasmic membrane vesicles of approximately 53 nm diameter in vivo. By opening these vesicles and adsorbing them onto mica to form small, < or =120 nm, largely flat sheets we have been able to visualize the organization of these LH2-only membranes for the first time. The transition from highly curved vesicle to the planar sheet is accompanied by a change in the packing of the LH2 complexes such that approximately half of the complexes are raised off the mica surface by approximately 1 nm relative to the rest. This vertical displacement produces a very regular corrugated appearance of the planar membrane sheets. Analysis of the topographs was used to measure the distances and angles between the complexes. These data are used to model the organization of LH2 complexes in the original, curved membrane. The implications of this architecture for the light harvesting function and diffusion of quinones in native membranes of R. sphaeroides are discussed.  相似文献   

2.
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl?d, Chl?f or bacteriochlorophyll (BChl) b to replace native BChl?a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg?10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6?ps, energy transfer from Chl?a to B850 BChl?a remained highly efficient. We measured faster energy-transfer time constants for Chl?d (3.5?ps) and Chl?f (2.7?ps), which have red-shifted absorption maxima compared to Chl?a. BChl?b, red-shifted from the native BChl?a, gave extremely rapid (≤0.1?ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.  相似文献   

3.
Spectral and kinetic characteristics of fluorescence from isolated reaction centers of photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus were measured at room temperature under rectangular shape of excitation at 810 nm. The kinetics of fluorescence at 915 nm reflected redox changes due to light and dark reactions in the donor and acceptor quinone complex of the reaction center as identified by absorption changes at 865 nm (bacteriochlorophyll dimer) and 450 nm (quinones) measured simultaneously with the fluorescence. Based on redox titration and gradual bleaching of the dimer, the yield of fluorescence from reaction centers could be separated into a time-dependent (originating from the dimer) and a constant part (coming from contaminating pigment (detached bacteriochlorin)). The origin was also confirmed by the corresponding excitation spectra of the 915 nm fluorescence. The ratio of yields of constant fluorescence over variable fluorescence was much smaller in Rhodobacter sphaeroides (0.15±0.1) than in Rhodobacter capsulatus (1.2±0.3). It was shown that the changes in fluorescence yield reflected the disappearance of the dimer and the quenching by the oxidized primary quinone. The redox changes of the secondary quinone did not have any influence on the yield but excess quinone in the solution quenched the (constant part of) fluorescence. The relative yields of fluorescence in different redox states of the reaction center were tabulated. The fluorescence of the dimer can be used as an effective tool in studies of redox reactions in reaction centers, an alternative to the measurements of absorption kinetics.Abbreviations Bchl bacteriochlorophyll - Bpheo bacteriopheophytin - D electron donor to P+ - P bacteriochlorophyll dimer - Q quinone acceptor - QA primary quinone acceptor - QB secondary quinone acceptor - RC reaction center protein - UQ6 ubiquinone-30  相似文献   

4.
The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas.  相似文献   

5.
The build-up and decay of bacteriochlorophyll (BChl) and carotenoid triplet states were studied by flash absorption spectroscopy in (a) the B800-850 antenna complex ofRhodobacter (Rb.)sphaeroides wild type strain 2.4.1, (b) theRb. sphaeroides R-26.1 B850 light-harvesting complex incorporated with spheroidene, (c) the B850 complex incorporated with 3,4-dihydrospheroidene, (d) the B850 complex incorporated with 3,4,5,6-tetrahydrospheroidene and (e) theRb. sphaeroides R-26.1 B850 complex lacking carotenoids. Steady state absorption and circular dichroism spectroscopy were used to evaluate the structural integrity of the complexes. The transient data were fit according to either single or double exponential rate expressions. The triplet lifetimes of the carotenoids were observed to be 7.0±0.1 s for the B800-850 complex, 14±2 s for the B850 complex incorporated with spheroidene, and 19±2 s for the B850 complex incorporated with 3,4-dihydrospheroidene. The BChl triplet lifetime in the B850 complex was 80±5 s. No quenching of BChl triplet states was seen in the B850 complex incorporated with 3,4,5,6-tetrahydrospheroidene. For the B850 complex incorporated with spheroidene and with 3,4-dihydrospheroidene, the percentage of BChl quenched by carotenoids was found to be related to the percentage of carotenoid incorporation. The triplet energy transfer efficiencies are compared to the values for singlet energy transfer measured previously (Frank et al. (1993) Photochem. Photobiol. 57: 49–55) on the same samples. These studies provide a systematic approach to exploring the effects of state energies and lifetimes on energy transfer between BChls and carotenoids in vivo.  相似文献   

6.
Photosynthetic light harvesting is a unique life process that occurs with amazing efficiency. Since the discovery of the structure of the bacterial peripheral light-harvesting complex (LH2), this process has been studied using a variety of advanced laser spectroscopic methods. We are now in a position to discuss the physical origins of excitation energy transfer and trapping in the LH2 and LH1 antennae of photosynthetic purple bacteria. We demonstrate that the time evolution of the state created by the light is determined by the combined action of excitonic pigment-pitment interactions, energetic disorder, and coupling to nuclear motion in a pigment-protein complex. A quantitative fit of experimental data using Redfield theory allowed us to determine the pathways and time scales of exciton and vibrational relaxation and analyze separately different contributions to the measured transient absorption dynamics. Furthermore, these dynamics were observed to be strongly dependent on the excitation wavelength. A numerical fit of this dependence turns out to be extremely critical to a variation of the structure and disorder parameters and, therefore, can be used as a test for different antenna models (disordered ring, elliptical deformations, correlated disorder, etc.). The calculated equilibration dynamics in the exciton basis allow a visualization of the exciton motion using a density matrix picture in real space.  相似文献   

7.
Low-temperature heterogeneous absorption and circular dichroism spectra of the Rb. sphaeroides LH2 complexes are calculated within the framework of the mini-exciton theory and diagonal static random disorder for the pure electronic transitions of the monomeric Bchl molecules. The coupling of Bchl molecules with the surrounding amino acid residues has been shown to change both the exciton distribution between the pigment molecules in each of the exciton states. The value of the delocalization index depends on the excitation wavelength and varies between 2-6 Bchl molecules. The optical transitions occurring at 780-790 and 820 nm have been found to be strongly mixed so that all Bchl molecules of the LH2 complex predetermine absorption in these spectral regions. On the other hand, absorption at 800 and 850 nm is mainly determined by the cycles of 9 and 18 Bchl molecules, respectively. Thus, the light energy absorbed by the B800 molecules at 800 nm is transferred to the B850 molecules by the interlevel exciton relaxation processes due to the population of the heavily mixed 820-nm exciton levels. The width of the heterogeneous absorption band for the cyclic monomeric aggregate has been shown to decrease as compared with the monomeric absorption band by square root(Ndel) time, where Ndel is the mean number of pigments over which the exciton is delocalized within the excited absorption band.  相似文献   

8.
Photosynthesis Research - Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to...  相似文献   

9.
Replacement of the central Mg in chlorophylls by Ni opens an ultrafast (tens of femtoseconds time range) radiationless de-excitation path, while the principal ground-state absorption and coordination properties of the pigment are retained. A method has been developed for substituting the native bacteriochlorophyll a by Ni-bacteriochlorophyll a ([Ni]-BChl) in the light harvesting antenna of the core complex (LH1) from the purple bacterium, Rhodobacter (Rb.) sphaeroides, to investigate its unit size and excited state properties. The components of the complex have been extracted with an organic solvent from freeze-dried membranes of an LH1-only strain of Rb. sphaeroides and transferred into the micelles of n-octyl-beta-glucopyranoside (OG). Reconstitution was achieved by solubilization in 3.4% OG, followed by dilution, yielding a complex nearly identical to the native one, in terms of absorption, fluorescence, and circular dichroism spectra as well as energy transfer efficiency from carotenoid to bacteriochlorophyll. By adding increasing amounts of [Ni]-BChl to the reconstitution mixture, a series of LH1 complexes was obtained that contain increasing levels of this efficient excitation trap. In contrast to the nearly unchanged absorption, the presence of [Ni]-BChl in LH1 markedly affects the emission properties. Incorporation of only 3.2 and 20% [Ni]-BChl reduces the emission by 50% and nearly 100%, respectively. The subnanosecond fluorescence kinetics of the complexes were monoexponential, with the lifetime identical to that of the native complex, and its amplitude decreasing in parallel with the steady-state fluorescence yield. Quantitative analysis of the data, based on a Poisson distribution of the modified pigment in the reconstituted complex, suggests that the presence of a single excitation trap per LH1 unit suffices for efficient emission quenching and that this unit contains 20 +/- 1 BChl molecules.  相似文献   

10.
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109–127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.  相似文献   

11.
Photosynthesis Research - Six variants of the LH2 antenna complex from Rba. sphaeroides, comprising the native B800-B850, B800-free LH2 (B850) and four LH2s with various (bacterio)chlorophylls...  相似文献   

12.
The photosynthetic apparatus of Rhodobacter sphaeroides is comprised of three types of pigment-protein complex: the photochemical reaction centre and its attendant LH1 and LH2 light-harvesting complexes. To augment existing deletion/insertion mutants in the genes coding for these complexes we have constructed two further mutants, one of which is a novel double mutant which is devoid of all three types of complex. We have also constructed vectors for the expression of either LH1, LH2 or reaction-centre genes. The resulting system allows each pigment-protein complex to be studied either as part of an intact photosystem or as the sole complex in the cell. In this way we have demonstrated that reaction centres can assemble independently of either light-harvesting complex in R. sphaeroides. In addition, the isolation of derivatives of the deletion/insertion mutants exhibiting spontaneous mutations in carotenoid biosynthesis provides an avenue for examining the role of carotenoids in the assembly of the photosynthetic apparatus. We show that the LH1 complex is assembled regardless of the carotenoid background, and that the type of carotenoid present modifies the absorbance of the LH1 bacteriochlorophylls.  相似文献   

13.
In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation.  相似文献   

14.
Carotenoids in the peripheral light-harvesting complexes (LH2) of the green mutant (GM309) of Rhodobacter sphaeroides were identified as containing neurosporenes, which lack the polar CH(3)O group, compared to spheroidenes in native-LH2 of R. sphaeroides 601. After LH2 complexes were treated with 1-anilino-8-naphthalene sulfonate (ANS), new energy transfer pathways from ANS or tryptophan to carotenoids were discovered in both native- and GM309-LH2. The carotenoid fluorescence intensity of GM309-LH2 was greater than that of native-LH2 when bound with ANS, suggesting that the elimination of polarity in the neurosporene increases the energy transfer from ANS to carotenoid. The fact that two alpha-tyrosines (alpha-Tyr 44, 45, B850-binding sites) in each alpha-apoprotein of GM309-LH2 were more easily modified than those of native-LH2 by N-acetylimidazole (NAI) indicates that the elimination of polarity in the neurosporene terminus increases the exposure of these sites to solution.  相似文献   

15.
The LH1 light harvesting complex has been purified from a mutant of the photosynthetic bacterium Rhodobacter sphaeroides which synthesizes LH1 as the sole pigment protein. Crystallization trials using polyethylene glycol as the precipitant in the presence of the detergent n-octyl glucoside have resulted in the formation of needle like crystals which diffract beyond 3.5 A and which are relatively resistant to radiation damage. X-ray photographs have established that the crystals belong to the tetragonal system and are probably in space group P4(2)2(1)2. Estimates of the crystal density indicate that the asymmetric unit of the crystals contains two oligomers each with an alpha 6 beta 6 stoichiometry.  相似文献   

16.
In this report, we present a study of carotenoid-bacteriochlorophyll energy transfer processes in two peripheral light-harvesting complexes (known as LH2) from purple bacteria. We use transient absorption spectroscopy with approximately 10 fs temporal resolution, which is necessary to observe the very fast energy relaxation processes. By comparing excited-state dynamics of the carotenoids in organic solvents and inside the LH2 complexes, it has been possible to directly evaluate their energy transfer efficiency to the bacteriochlorophylls. In the case of okenone in the LH2 complex from Chromatium purpuratum, we obtained an energy transfer efficiency of etaET2=63+/-2.5% from the optically active excited state (S2) and etaET1=61+/-2% from the optically dark state (S1); for rhodopin glucoside contained in the LH2 complex from Rhodopseudomonas acidophila these values become etaET2=49.5+/-3.5% and etaET1=5.1+/-1%. The measurements also enabled us to observe vibrational energy relaxation in the carotenoids' S1 state and real-time collective vibrational coherence initiated by the ultrashort pump pulses. Our results are important for understanding the dynamics of early events of photosynthesis and relating it to the structural arrangement of the chromophores.  相似文献   

17.
Studies of intracytoplasmic membrane biogenesis employing steady-state synchronously dividing populations of Rhodobacter sphaeroides reveal that the translocation of pre-existing phospholipid into the growing membrane is concurrent with cell division (Cain, B.D., Deal, C.D., Fraley, R.T. and Kaplan, S. (1981) J. Bacteriol. 145, 1154–1166), yet the mechanism of phospholipid movement is unknown. However, the discovery of phospholipid transfer protein activity in R. sphaeroides (Cohen, L.K., Lueking, D.R. and Kaplan, S. (1979) J. Biol. Chem. 254, 721–728) provides one possible mechanism for phospholipid movement. Therefore the level of phospholipid transfer activity in cell lysates of synchronized cultures was measured and was shown to increase stepwise coinciding precisely with the increase in cell number of the culture. Although the amount of transfer activity per cell remained constant throughout the cell cycle, the specific activity of the phospholipid transfer activity showed a cyclical oscillation with its highest value coincident with the completion of cell division. Purified intracytoplasmic membrane can be used as phospholipid acceptor in the developed phospholipid transfer assay by employing either cytoplasmic membrane or liposomes as the phospholipid donor. Intracytoplasmic membrane isolated from the cells prior to division (high protein to phospholipid ratio) served as a better phospholipid acceptor in the phospholipid transfer system when compared with membranes derived from the cells following cell division (low protein to phospholipid ratio).  相似文献   

18.
The effects of D2O, glycerol and dimethyl sulfoxide (DMSO) on redox potential Em of bacteriochlorophyll of a special P2 or [P(M)P(L)] pair, the rate of energy migration from bacteriopheophytin H(M) to [P(M)P(L)], electron transfer from [P(M)P(L)] to bacteriopheophytin H(L) and then to quinone Q(A) in reaction centers (RC) of Rhodobacter sphaeroides were studied. The H2O --> D2O substitution did not change Em of the special pair, whereas addition of 70% glycerol or 35% DMSO (v/v) increased the values of Em by 30 and 45 mV, respectively. Rate constants of energy migration km(H(M)* (km)--> P2), charge separation ke([P(M)P(L)] *H(L) (ke)--> [P(M)P(L)] +H(L)-), electron transfer to quinone kQ did not change after the glycerol addition, whereas isotopic substitution and addition of DMSO caused a 2-3-fold increase in km, ke, and kQ values. Theoretical analysis of the redox center potential dependence on dielectric permeability epsilon, swelling of the protein globule in a solvent, and on changes in the charge distribution (charge shifts) in the protein interior near the redox center was carried out. It has been shown that the H2O replacement with DMSO can result in the Em increase by tens of mV. No correlation was found between the Em values and the rate of charge separation upon isotopic substitution and addition of cryoprotectants. The effect of epsilon of the medium on the rate of electron transport due to changes of energy of intermolecular interaction between the donor and acceptor molecules was estimated.  相似文献   

19.
P Braun  A Scherz 《Biochemistry》1991,30(21):5177-5184
The light-harvesting complex (LHC) B850 from Rhodobacter sphaeroides was dissociated into several fragments by treatment with sodium dodecyl sulfate. The molecular weight of each fragment was determined by using transverse polyacrylamide gel electrophoresis under nondenaturing conditions and gel filtration techniques. Four B850 LHCs were observed, having molecular weights of 60,000, 72,000-75,000, 105,000, and 125,000-145,000, and two small bacteriochlorophyll (Bchl)-polypeptide complexes having molecular weights of 6000-8000 and 12,000-14,000. Each of the B850 complexes contains ca. one Bchl a for each 6.5-kDa protein. The optical absorption and circular dichroism of the B850 LHCs recorded directly from the gels are similar to those measured previously for a 22-24-kDa B850 LHCs by Sauer and Austin [(1978) Biochemistry 17, 2011-2019]. These data, combined with studies of other groups, indicate that the smallest LHC in LH1 and LH2 is a Bchl-polypeptide tetramer. Each tetramer contains two Bchl dimers that probably have the structure of P-860, the primary electron donor in Rhodobacter sphaeroides, and two alpha-beta-polypeptide pairs. Interactions among the paired Bchls shift their individual Qy transitions from 780-800 to 850-860 nm, and interactions among two such pairs induce the circular dichroism signal of the LHCs. Three Bchl-polypeptide tetramers probably form a dodecamer having C3 symmetry, and six such dodecamers organize into a large hexagon that can accommodate one or two reaction center complexes.  相似文献   

20.
The extent of electrostatic contributions from the protein environment was assessed by the introduction of ionizable residues near the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Two mutations at symmetry-related sites, M199 Asn to Asp and L170 Asn to Asp, resulted in a 48 and 44 mV lowering of the midpoint potential, respectively, compared to the wild type at pH 8, while a 75 mV decrease in the midpoint potential was observed for the mutation L168 His to Glu. The decrease relative to wild type was found to be approximately additive, up to 147 mV, for various combinations of the mutations. As the pH was lowered from 9.5 to 6.0, the relative decrease in the midpoint potential became smaller for each of these three mutations. Titration of the pH dependence of the change in midpoint potential of the M199 Asn to Asp mutant compared to wild type yielded a pK(a) value of 7.9 and a change in midpoint potential from low to high pH of 59 mV. The major effect of the mutation on the midpoint potential of the dimer is interpreted as stemming from a negative charge on the residue. An average dielectric constant of approximately 20 was estimated for the local protein environment, consistent with a relatively hydrophobic environment for residue M199. The rate of charge recombination between the primary quinone acceptor and the bacteriochlorophyll dimer decreased in the M199 Asn to Asp mutant at high pH, reflecting the decrease in midpoint potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号