首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alpha-helix terminates when the virtual extension of its most hydrophobic, longitudinal strip containing Leu, Ile, Val, Phe, and Met lacks those residues. In each of 247 helices a template was fitted to maximize the mean hydrophobicity of positions forming a longitudinal strip-of-helix. The template was then extended into sequences beyond the ends of the helices. Leu, Ile, Val, Phe, and Met occurred in positions in the longitudinal strip-of-helix at an increased frequency (p less than 0.001), but in the first and second positions beyond either end of each true helix, they occurred at the same frequency as for their empirical distribution over all the proteins. Excesses of Asp and Glu were found in the N-terminal loop, and of Arg, His, and Lys in specific positions about the C terminus of helices. The longitudinal hydrophobic strip, the smallest amino acid in that strip, and charged amino acids in that strip, related to rotational and longitudinal orientation of alpha-helices in 15 proteins. Adjacent helices generally crossed through their longitudinal hydrophobic strips. They usually crossed through the smallest residue in the strip. Charged residues, when they occurred in the strips, were excluded from the crossing regions.  相似文献   

2.
Helix formation in folding proteins is stabilized by binding of recurrent hydrophobic side chains in one longitudinal quadrant against the locally most hydrophobic region of the protein. To test this hypothesis, we fitted sequences of 247 alpha-helices of 55 proteins to the circular (infinite) template (symbol; see text) to maximize the strip-of-helix hydrophobicity index (the mean hydrophobicity of residues in (symbol; see text) positions). These template-predicted configurations closely matched crystallographic structures in 87% of four- or five-turn helices compared. We determined the longitudinal quadrant distributions of amino acids in the template-fitted, sheet projections of alpha-helices with respect to the best longitudinal, hydrophobic strip on each helix and to the N and C termini, interiors, and entire helices. Amino acids Leu, Ile, Val, and Phe were concentrated in one longitudinal quadrant (p less than 0.001). Lys, Arg, Asp, and Glu were not in the quadrant of Leu, Ile, Val, and Phe (p less than 0.001). Significant quadrant distributions for other amino acids and for termini of the helices were also found.  相似文献   

3.
We tested the hypothesis that the recurrence of hydrophobic amino acids in a polypeptide at positions falling in an axial, hydrophobic strip if the sequence were coiled as an alpha helix, can lead to helical nucleation on a hydrophobic surface. The hydrophobic surface could anchor such residues, whereas the peptide sequence grows in a helical configuration that is stabilized by hydrogen bonds among carbonyl and amido NH groups along the peptidyl backbone of the helix, and by other intercycle interactions among amino acid side chains. Such bound, helical structures might protect peptides from proteases and/or facilitate transport to a MHC-containing compartment and thus be reflected in the selection of T cell-presented segments. Helical structure in a series of HPLC-purified peptides was estimated from circular dichroism measurements in: 1) 0.01 M phosphate buffer, pH 7.0, 2) that buffer with 45% trifluoroethanol (TFE), and 3) that buffer with di-O-hexadecyl phosphatidylcholine vesicles. By decreasing the dielectric constant of the buffer, TFE enhances intrapeptide interactions generally, whereas the lipid vesicles only provide a surface for hydrophobic interactions. The peptides varied in their strip-of-helix hydrophobicity indices (SOHHI; the mean Kyte-Doolittle hydrophobicities of residues in an axial strip of an alpha helix) and in proline content. Structural order for peptides with helical circular dichroism spectra was estimated as percentage helicity from circular dichroism theta 222 nm values and peptide concentration. A prototypic alpha helical peptide with three cycles plus two amino acids and an axial hydrophobic strip of four leucyl residues (SOHHI = 3.8) was disordered in phosphate buffer, 58% helical in that buffer with 48% TFE, and 36% helical in that buffer with vesicles. Percentage helicity in the presence of vesicles of the subset of peptides without proline followed their SOHHI values. Peptides with multiple prolyl residues had circular dichroism spectra with strong signals, but since they did not have altered spectra in the presence of vesicles relative to phosphate buffer alone, the hydrophobic surface of the vesicle did not appear to stabilize those structures.  相似文献   

4.
S Kumar  M Bansal 《Biophysical journal》1996,71(3):1574-1586
Elucidation of the detailed structural features and sequence requirements for alpha helices of various lengths could be very important in understanding secondary structure formation in proteins and, hence, in the protein folding mechanism. An algorithm to characterize the geometry of an alpha helix from its C(alpha) coordinates has been developed and used to analyze the structures of long alpha helices (number of residues > or = 25) found in globular proteins, the crystal structure coordinates of which are available from the Brookhaven Protein Data Bank. All long alpha helices can be unambiguously characterized as belonging to one of three classes: linear, curved, or kinked, with a majority being curved. Analysis of the sequences of these helices reveals that the long alpha helices have unique sequence characteristics that distinguish them from the short alpha helices in globular proteins. The distribution and statistical propensities of individual amino acids to occur in long alpha helices are different from those found in short alpha helices, with amino acids having longer side chains and/or having a greater number of functional groups occurring more frequently in these helices. The sequences of the long alpha helices can be correlated with their gross structural features, i.e., whether they are curved, linear, or kinked, and in case of the curved helices, with their curvature.  相似文献   

5.
Recent mutational analyses of ligand-gated ion channels (LGICs) have demonstrated a plausible site of anesthetic action within their transmembrane domains. Although there is a consensus that the transmembrane domain is formed from four membrane-spanning segments, the secondary structure of these segments is not known. We utilized 10 state-of-the-art bioinformatics techniques to predict the transmembrane topology of the tetrameric regions within six members of the LGIC family that are relevant to anesthetic action. They are the human forms of the GABA alpha 1 receptor, the glycine alpha 1 receptor, the 5HT3 serotonin receptor, the nicotinic AChR alpha 4 and alpha 7 receptors and the Torpedo nAChR alpha 1 receptor. The algorithms utilized were HMMTOP, TMHMM, TMPred, PHDhtm, DAS, TMFinder, SOSUI, TMAP, MEMSAT and TOPPred2. The resulting predictions were superimposed on to a multiple sequence alignment of the six amino acid sequences created using the CLUSTAL W algorithm. There was a clear statistical consensus for the presence of four alpha helices in those regions experimentally thought to span the membrane. The consensus of 10 topology prediction techniques supports the hypothesis that the transmembrane subunits of the LGICs are tetrameric bundles of alpha helices.  相似文献   

6.
The average hydrophobicity of a polypeptide segment is considered to be the most important factor in the formation of transmembrane helices, and the partitioning of the most hydrophobic (MH) segment into the alternative nonpolar environment, a membrane or hydrophobic core of a globular protein may determine the type of protein produced. In order to elucidate the importance of the MH segment in determining which of the two types of protein results from a given amino acid sequence, we statistically studied the characteristics of MH helices, longer than 19 residues in length, in 97 membrane proteins whose three-dimensional structure or topology is known, as well as 397 soluble proteins selected from the Protein Data Bank. The average hydrophobicity of MH helices in membrane proteins had a characteristic relationship with the length of the protein. All MH helices in membrane proteins that were longer than 500 residues had a hydrophobicity greater than 1.75 (Kyte and Doolittle scale), while the MH helices in membrane proteins smaller than 100 residues could be as hydrophilic as 0.1. The possibility of developing a method to discriminate membrane proteins from soluble ones, based on the effect of size on the type of protein produced, is discussed.  相似文献   

7.
Direct physical chemistry measurements of the hydrophobicity of amino acids or their derivatives have often been used to estimate the propensity of amino acids to participate in transmembrane helices. In this short note, it is found that there is a very high degree of correlation (r = 0.944–0.965) between an average physical chemistry hydrophobicity scale (an average of scales derived, e.g., from the solubility of amino acid derivatives in organic solvents versus water or their binding to hydrophobic particles) and the statistically based transmembrane tendency scale (derived from the relative abundance of residues in known transmembrane and soluble protein sequences (Zhao and London, Protein Sci 15:1987–2001, 2006)). This correlation indicates that, other than hydrophobicity, amino acid properties/interactions that promote or inhibit transmembrane helix formation in a specific membrane protein largely cancel out when averaged over all transmembrane sequences. In other words, other than hydrophobicity, there are no properties of a specific amino acid residue within a hydrophobic segment that have a strong systematic effect upon transmembrane helix formation independent of the remainder of the sequence in that hydrophobic segment. However, proline is an exception to this rule.  相似文献   

8.
Grain softness protein (GSP) is an important protein for overcoming milling and grain defenses in the innate immunity systems of cereals. The objective of this study was to evaluate and understand GSP sequences in selected wheat, rye and triticale. Using sequences for this gene from a sequence database, we performed clustering analysis to compare the sequences obtained from 3 germplasms with other studied sequences for GSP. The maximum difference between the Hirmand GSP genotype in wheat and the database sequences was 23% in EF109396 and EF109399. Most amino acid variation between the GSP sequences involved the same amino acids. The Nikita rye GSP gene showed 64% identity with DQ269918 and AY667063. The isoelectric point in the GSP of wheat and Lasko triticale was significantly higher than that of rye GSP. In addition, parameters such as optical density, grand average of hydrophobicity, percentage of hydrophobicity and hydrophilic amino acids, and number of alpha helices and beta sheets in GSP were similar in wheat and triticale but not in wheat and rye.  相似文献   

9.
The phylogenetic distribution of the gene coding for bacterial alkaline phosphatase (phoA) was examined in nine species of enteric bacteria closely related to Escherichia coli. The nucleotide and protein sequences from the E. fergusonii and Serratia marcescens genes are presented. The spatial distribution of replaced amino acid residues in the aligned sequences is shown to be highly nonrandom and can be correlated with specific regions within the tertiary structure of the protein. There is an avoidance of replacements within the beta sheet of the protein, and there is an excess of replacements elsewhere, particularly in solvent-exposed residues. In addition, all positions across alpha helices do not accept replacements with equal frequency; there is a bias toward acceptance of replacements in the carboxyl ends of helices. To examine this further, mutations within the E. coli phoA gene were created using site-directed mutagenesis. The patterns seen from the sequence comparisons were verified in the laboratory-created mutants. The average activity of mutations within or near the beta sheet was approximately one-third of that within or near alpha helices, and multiple mutations within the carboxyl ends of alpha helices always possessed greater activity than did multiple mutations within the corresponding amino ends. The results indicate that identifiable regions within the protein are under different selective pressures and are therefore evolving at different rates.  相似文献   

10.
Koshi JM  Bruno WJ 《Proteins》1999,34(3):333-340
We identify amino acid characteristics important in determining the secondary structures of transmembrane proteins, and compare them with characteristics important for cytoplasmic proteins. Using information derived from multiple sequence alignments, we perform a principal component analysis (PCA) to identify the directions in the 20-dimensional amino acid frequency space that comprise the most variance within each protein secondary structure. These vectors represent the important position-specific properties of the amino acids for coils, turns, beta sheets, and alpha helices. As expected, the most important axis for most of the datasets was hydrophobicity. Additional axes, distinct from hydrophobicity, are surprising, especially in the case of transmembrane alpha helices, where the effects of aromaticity and beta-branching are the next two most significant characteristics. The axis representing beta-branching also has equal importance in cytoplasmic and transmembrane helices, a finding that contrasts with some experimental results in membrane-like environments. In a further analysis, we examine trends for some of the PCA axes over averaged transmembrane alpha helices, and find interesting results for aromaticity.  相似文献   

11.
51 polypeptides of known 3-dimensional structures have been submitted to a search for internal similarities. It is shown that the frequency of proteins displaying significant amounts of internal similarities is higher than predicted by chance. A non-negligible part of those similarities probably occurs in connection with the existence of ordered secondary structures. Indeed, similarity occurs at a much more important rate when analyses are restricted to protein subsequences corresponding to alpha helices or beta pleated sheets. Furthermore, the correlation existing between the rates at which linear and inverted repeats occur inside protein subregions of ordered secondary structures suggests that a significant part of short similarities are analogies rather than homologies. An hypothesis is put forward suggesting that the regular alternations of hydrophobicity which characterize most of alpha helices and beta strands could provoke the occurrence of significant amounts of similarities inside protein sequences.  相似文献   

12.
In this paper we propose a classification of the amphipathic helical repeats occurring in the plasma apolipoprotein sequences. It is based upon the calculation of the molecular hydrophobicity potential around the helical segments. The repeats were identified using a new autocorrelation matrix, based upon similarities of hydrophobic and hydrophilic properties of the amino acid residues within the apolipoprotein sequences. The helices were constructed by molecular modeling, the molecular hydrophobicity potential was calculated, and isopotential contour lines drawn around the helices yielded a three-dimensional visualization of the hydrophobicity potential. Two classes of apolipoproteins could be differentiated by comparing the hydrophobic angles obtained by projection of the isopotential contour lines on a plane perpendicular to the long axis of the helix. The isopotential contour lines around apo AI, AIV, and E are more hydrophilic than hydrophobic, whereas they are of similar intensity for apo AII, CI, and CIII. In both cases discoidal lipid-protein complexes are generated, with the amphipathic helices around the edge of the lipid core. The long axis of the helices is oriented parallel to the phospholipid acyl chains and the hydrophilic side of the helix toward the aqueous phase. As a result of the differences in hydrophobicity potential, the contact between the hydrophobic side of the helices and the phospholipid acyl chains is larger for apo AII, CI, and CIII than for the other apolipoproteins. This might account for the greater stability of the discoidal complexes generated between phospholipids and these apoproteins.  相似文献   

13.
Homologies based on structural motifs characterize conserved structures and mechanisms of maintaining function. An algorithm was developed to quantitate homology among segments of two proteins based upon structural characteristics of an amphipathic α-helix. This helical mimicry algorithm scored homology among sequences of two proteins in terms of: (i) presence of Leu, Ile, Val, Phe, or Met in a longitudinal, hydrophobic strip-of-helix at positions n, n + 4, n + 7, n + 11, etc. in the primary sequence, (ii) identity or chemical similarity of amino acids at intervening positions and (iii) exchanges of amino acids from positions n to n − 1, n + 3, n + 4, n + 1, n − 3, n − 4 around n (on the surface of a putative helix). While such exchanges of amino acids on the surfaces of homologous helices may conserve function, they did not maintain specific interactions of those residues with apposing groups.  相似文献   

14.
Patterns of alternation of hydrophobic and polar residues are a profound aspect of amino acid sequences, but a feature not easily interpreted for soluble proteins. Here we report statistics of hydrophobicity patterns in proteins of known structure in a current protein database as compared with results from earlier, more limited structure sets. Previous studies indicated that long hydrophobic runs, common in membrane proteins, are underrepresented in soluble proteins. Long runs of hydrophobic residues remain significantly underrepresented in soluble proteins, with none longer than 16 residues observed. These long runs most commonly occur as buried alpha helices, with extended hydrophobic strands less common. Avoiding aggregation of partially folded intermediates during intracellular folding remains a viable explanation for the rarity of long hydrophobic runs in soluble proteins. Comparison between database editions reveals robustness of statistics on aqueous proteins despite an approximately twofold increase in nonredundant sequences. The expanded database does now allow us to explain several deviations of hydrophobicity statistics from models of random sequence in terms of requirements of specific secondary structure elements. Comparison to prior membrane-bound protein sequences, however, shows significant qualitative changes, with the average hydrophobicity and frequency of long runs of hydrophobic residues noticeably increasing between the database editions. These results suggest that the aqueous proteins of solved structure may represent an essentially complete sample of the universe of aqueous sequences, while the membrane proteins of known structure are not yet representative of the universe of membrane-associated proteins, even by relatively simple measures of hydrophobic patterns.  相似文献   

15.
Three aminoacyl-tRNA synthetases from yeast, one from plants and one from mammals possess unusual structures at their N termini, namely alpha helices with basic residues distributed asymmetrically, on a single face of the helix. It is unknown if these 'basic faced' alpha helices (BFAHs) are unique to the aminoacyl-tRNA synthetases. Analysis of the amino acid sequences of these five aminoacyl-tRNA synthetases using the hydrophobic moment algorithm failed to accurately identify the BFAHs. A new algorithm was therefore developed, called the 'basic moment'. This is a Fourier analysis procedure that predicts the distribution of basic residues within protein secondary structure. The basic moment identifies with a high degree of accuracy the five known BFAHs and also identifies further potential BFAHs at evolutionarily conserved positions in the peptide extensions of aspartyl-, lysyl- and valyl- tRNA synthetases from a range of eukaryotic species. In addition, the algorithm identifies the two-helix pair tRNA binding domain of alanyl-tRNA synthetase, implying that the domain includes a BFAH. The functional and evolutionary aspects of these structural features are discussed.  相似文献   

16.
In spite of the overwhelming numbers and critical biological functions of membrane proteins, only a few have been characterized by high-resolution structural techniques. From the structures that are known, it is seen that their transmembrane (TM) segments tend to fold most often into alpha-helices. To evaluate systematically the features of these TM segments, we have taken two approaches: (1) using the experimentally-measured residence behavior of specifically designed hydrophobic peptides in RP-HPLC, a scale was derived based directly on the properties of individual amino acids incorporated into membrane-interactive helices: and (2) the relative alpha-helical propensity of each of the 20 amino acids was measured in the organic non-polar environment of n-butanol. By combining the resulting hydrophobicity and helical propensity data, in conjunction with consideration of the 'threshold hydrophobicity' required for spontaneous membrane integration of protein segments, an approach was developed for prediction of TM segments wherein each must fulfill the dual requirements of hydrophobicity and helicity. Evaluated against the available high-resolution structural data on membrane proteins, the present combining method is shown to provide accurate predictions for the locations of TM helices. In contrast, no segment in soluble proteins was predicted as a 'TM helix'.  相似文献   

17.
Membrane proteins are crucial for many biological functions and have become attractive targets for pharmacological agents. About 10%-30% of all proteins contain membrane-spanning helices. Despite recent successes, high-resolution structures for membrane proteins remain exceptional. The gap between known sequences and known structures calls for finding solutions through bioinformatics. While many methods predict membrane helices, very few predict membrane strands. The good news is that most methods for helical membrane proteins are available and are more often right than wrong. The best current prediction methods appear to correctly predict all membrane helices for about 50%-70% of all proteins, and to falsely predict membrane helices for about 10% of all globular proteins. The bad news is that developers have seriously overestimated the accuracy of their methods. In particular, while simple hydrophobicity scales identify many membrane helices, they frequently and incorrectly predict membrane helices in globular proteins. Additionally, all methods tend to confuse signal peptides with membrane helices. Nonetheless, wet-lab biologists can reach into an impressive toolbox for membrane protein predictions. However, the computational biologists will have to improve their methods considerably before they reach the levels of accuracy they claim.  相似文献   

18.
The recognition of transmembrane helices by the translocon is primarily guided by the average hydrophobicity of the potential transmembrane helix. However, the exact hydrophobicity of each amino acid can be identified in several different ways. The free energy of transfer for amino acid analogues between a hydrophobic media, for example, octanol and water can be measured or obtained from simulations, the hydrophobicity can also be estimated by statistical properties from known transmembrane segments and finally the contribution of each amino acid type for the probability of translocon recognition has recently been measured directly. Although these scales correlate quite well, there are clear differences between them and it is not well understood which scale represents neither the biology best nor what the differences are. Here, we try to provide some answers to this by studying the ability of different scales to recognize transmembrane helices and predict the topology of transmembrane proteins. From this analysis it is clear that the biological hydrophobicity scale as well scales created from statistical analysis of membrane helices perform better than earlier experimental scales that are mainly based on measurements of amino acid analogs and not directly on transmembrane helix recognition. Using these results we identified the properties of the scales that perform better than other scales. We find, for instance, that the better performing scales consider proline more hydrophilic. This shows that transmembrane recognition is not only governed by pure hydrophobicity but also by the helix preferences for amino acids, as proline is a strong helix breaker. Proteins 2014; 82:2190–2198. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The architecture and weights of an artificial neural network model that predicts putative transmembrane sequences have been developed and optimized by the algorithm of structure evolution. The resulting filter is able to classify membrane/nonmembrane transition regions in sequences of integral human membrane proteins with high accuracy. Similar results have been obtained for both training and test set data, indicating that the network has focused on general features of transmembrane sequences rather than specializing on the training data. Seven physicochemical amino acid properties have been used for sequence encoding. The predictions are compared to hydrophobicity plots.  相似文献   

20.
The rational design of peptide and protein helices is not only of practical importance for protein engineering but also is a useful approach in attempts to improve our understanding of protein folding. Recent modifications of theoretical models of helix‐coil transitions allow accurate predictions of the helix stability of monomeric peptides in water and provide new possibilities for protein design. We report here a new method for the design of α‐helices in peptides and proteins using AGADIR, the statistical mechanical theory for helix‐coil transitions in monomeric peptides and the tunneling algorithm of global optimization of multidimensional functions for optimization of amino acid sequences. CD measurements of helical content of peptides with optimized sequences indicate that the helical potential of protein amino acids is high enough to allow formation of stable α‐helices in peptides as short as of 10 residues in length. The results show the maximum achievable helix content (HC) of short peptides with fully optimized sequences at 5 °C is expected to be ~70–75%. Under certain conditions the method can be a powerful practical tool for protein engineering. Unlike traditional approaches that are often used to increase protein stability by adding a few favorable interactions to the protein structure, this method deals with all possible sequences of protein helices and selects the best one from them. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号