首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The signal transduction and molecular mechanisms underlying alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-mediated neuroprotection are unknown. In the present study, we determined a major AMPA receptor-mediated neuroprotective pathway. Exposure of cerebellar granule cells to AMPA (500 microM) + aniracetam (1 microM), a known blocker of AMPA receptor desensitization, evoked an accumulation of brain-derived neurotropic factor (BDNF) in the culture medium and enhanced TrkB-tyrosine phosphorylation following the release of BDNF. AMPA also activated the src-family tyrosine kinase, Lyn, and the downstream target of the phosphatidylinositol 3-kinase (PI3-K) pathway, Akt. Extracellular signal regulated kinase (ERK), a component of the mitogen-activated protein kinase (MAPK) pathway, was also activated. K252a, a selective inhibitor of neurotrophin signaling, blocked the AMPA-mediated neuroprotection. The involvement of BDNF release in protecting neurons by AMPA was confirmed using a BDNF-blocking antibody. AMPA-mediated neuroprotection is blocked by PP1, an inhibitor of src family kinases, LY294002, a PI3-K inhibitor, or U0126, a MAPK kinase (MEK) inhibitor. Neuroprotective concentrations of AMPA increased BDNF mRNA levels that was blocked by the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX). The increase in BDNF gene expression appeared to be the downstream target of the PI3-K-dependent activation of the MAPK cascade since MEK or the PI3-K inhibitor blocked the AMPA receptor-mediated increase in BDNF mRNA. Thus, AMPA receptors protect neurons through a mechanism involving BDNF release, TrkB receptor activation, and a signaling pathway involving a PI3-K dependent activation of MAPK that increases BDNF expression.  相似文献   

4.
5.
SCF induces autophosphorylation of Kit and activates a variety of signaling components including Jnks, Erks, PI 3 Kinase, the JAK-Stat pathway and members of the Src family. Previously we showed that Lyn is activated at multiple points during SCF-induced cell cycle progression and contributes to SCF-mediated growth, chemotaxis and internalization of Kit. However, the Kit-dependent biochemical events that require Lyn are unknown. In this study, we used Lyn-deficient bone marrow mast cells (BMMC) to examine the contribution of this Src family member to tyrosine phosphorylation of Kit and SCF-induced activation of Jnks, Akt, Stat3 and Erks. Although surface expression of Kit was increased in Lyn-deficient BMMC, SCF-induced phosphorylation and growth was reduced compared to wild-type BMMC. Downstream of Kit, SCF-induced activation of Jnks was markedly reduced in Lyn-deficient BMMC. Further, Lyn was required for SCF-induced tyrosine phosphorylation of Stat3. Interestingly, Kit was constitutively associated with PI 3 Kinase in Lyn-deficient BMMC and this correlated with constitutive phosphorylation of Akt. This was in marked contrast to wild-type BMMC, where both these events were induced by SCF. These data indicate that in BMMC, Lyn contributes to SCF-induced phosphorylation of Kit, as well as phosphorylation of Jnks and Stat3. In contrast, Lyn may negatively regulate the PI 3 Kinase/Akt pathway. The opposing effects of Lyn on these signaling pathways may explain the pleiotropic effects ascribed to this Src family member in the literature.  相似文献   

6.
7.
The serine/threonine protein kinase Akt is a major signal transducer of the phosphoinositide 3-kinase (PI 3-K) pathway in all cells and tissues and plays a pivotal role in the maintenance of cellular processes including cell growth, proliferation, survival and metabolism. The frequent aberrant activation of the PI 3-K/Akt pathway in human cancer has made it an attractive therapeutic target. Numerous studies have provided a comprehensive understanding of the specific functions of Akt signaling in cancer cells as well as the surrounding tumor microenvironment and this has informed and enabled the development of therapeutic drugs to target both PI 3-K and Akt. However, recent studies have provided evidence for distinct functions of the three mammalian Akt isoforms, particularly with respect to the regulation of cell motility and metastasis of breast cancer. Here we discuss the mechanisms by which Akt signaling contributes to invasive migration and tumor metastasis, and highlight recent advances in our understanding of the contribution of the Akt pathway in the tumor-associated stroma.  相似文献   

8.
Signaling pathways regulating the differentiation program of epidermal cells overlap widely with those activated during apoptosis. How differentiating cells remain protected from premature death, however, is still poorly defined. We show here that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated at early stages of mouse keratinocyte differentiation both in culture and in the intact epidermis in vivo. Expression of active Akt in keratinocytes promotes growth arrest and differentiation, whereas pharmacological blockade of PI3K inhibits the expression of "late" differentiation markers and leads to death of cells that would otherwise differentiate. Mechanistically, the activation of the PI3K/Akt pathway in keratinocyte differentiation depends on the activity of the epidermal growth factor receptor and Src families of tyrosine kinases and the engagement of E-cadherin-mediated adhesion. During this process, PI3K associates increasingly with cadherin-catenin protein complexes bearing tyrosine phosphorylated YXXM motifs. Thus, the PI3K signaling pathway regulates the choice between epidermal cell differentiation and death at the cross-talk between tyrosine kinases and cadherin-associated catenins.  相似文献   

9.
The serine/threonine kinase Akt (also known as protein kinase B) is activated in response to various stimuli by a mechanism involving phosphoinositide 3-kinase (PI3-K). Akt provides a survival signal that protects cells from apoptosis induced by growth factor withdrawal, but its function in other forms of stress is less clear. Here we investigated the role of PI3-K/Akt during the cellular response to oxidant injury. H(2)O(2) treatment elevated Akt activity in multiple cell types in a time- (5-30 min) and dose (400 microM-2 mm)-dependent manner. Expression of a dominant negative mutant of p85 (regulatory component of PI3-K) and treatment with inhibitors of PI3-K (wortmannin and LY294002) prevented H(2)O(2)-induced Akt activation. Akt activation by H(2)O(2) also depended on epidermal growth factor receptor (EGFR) signaling; H(2)O(2) treatment led to EGFR phosphorylation, and inhibition of EGFR activation prevented Akt activation by H(2)O(2). As H(2)O(2) causes apoptosis of HeLa cells, we investigated whether alterations of PI3-K/Akt signaling would affect this response. Wortmannin and LY294002 treatment significantly enhanced H(2)O(2)-induced apoptosis, whereas expression of exogenous myristoylated Akt (an activated form) inhibited cell death. Constitutive expression of v-Akt likewise enhanced survival of H(2)O(2)-treated NIH3T3 cells. These results suggest that H(2)O(2) activates Akt via an EGFR/PI3-K-dependent pathway and that elevated Akt activity confers protection against oxidative stress-induced apoptosis.  相似文献   

10.
Previously, we have demonstrated that the two mitogenic growth factors epidermal growth factor and IGF-I can activate Akt and estrogen receptor-alpha (ERalpha) in the hormone-dependent breast cancer cell line, MCF-7. In this report we now show that estradiol can also rapidly activate phosphatidylinositol 3-kinase (PI 3-K)/Akt and that this effect is mediated by the ErbB2 signaling pathway. Treatment of cells with estradiol resulted in phosphorylation of Akt and a 9-fold increase in Akt activity in 10 min. Akt activation was blocked by wortmannin and LY 294,002, two inhibitors of PI 3-K; by genistein, a protein tyrosine kinase inhibitor and an ER agonist; by AG825, a selective ErbB2 inhibitor; and by the antiestrogens ICI 182,780 and 4-hydroxy-tamoxifen; but not by rapamycin, an inhibitor of the ribosomal protein kinase p70S6K; nor by AG30, a selective epidermal growth factor receptor inhibitor. Akt activation by estradiol was abrogated by an arginine-to-cysteine mutation in the pleckstrin homology domain of Akt (R25C). Growth factors also activated Akt in the ER-negative variant of MCF-7, MCF-7/ADR, but estradiol did not induce Akt activity in these cells. Transient transfection of ERalpha into these cells restored Akt activation by estradiol, suggesting that estradiol activation of Akt requires the ERalpha. Estradiol did not activate Akt in MCF-7 cells stably transfected with an anti-ErbB2-targeted ribozyme, further confirming a role for ErbB2. In vitro kinase assays using immunoprecipitation and anti-Akt1, -Akt2, and -Akt3-specific antibodies demonstrated that Akt1 is activated by estradiol in MCF-7 cells whereas Akt3 is the activated isoform in ER-negative MDA-MB231 cells, implying that selective activation of Akt subtypes plays a role in the actions of estradiol. Taken together, our data suggest that estradiol, bound to membrane ERalpha, interacts with and activates an ErbB dimer containing ErbB2, inducing activation of PI 3-K/Akt.  相似文献   

11.
Latent membrane protein 2A (LMP2A) blocks B-cell receptor signal transduction in vitro by binding the Syk and Lyn protein tyrosine kinases. As well as blocking B-cell signal transduction, LMP2A has been shown to activate the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, which acts as a survival signal in both B cells and epithelial cells. Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional cytokine that plays important roles in regulating cell growth and differentiation in many biological systems. The loss of the growth-inhibitory response to the TGF-beta 1 signal is found in many cancers and is widely thought to promote tumor development. In this study, we found that LMP2A induced the phosphorylation of Akt (serine 473) in Burkitt's lymphoma cell line Ramos and in gastric carcinoma cell line HSC-39 and partially enhanced cell viability following TGF-beta 1 treatment. In addition, LMP2A partially inhibited TGF-beta 1-induced DNA fragmentation and cleavage of poly(ADP-ribose) polymerase (PARP). In the presence of LY294002, an inhibitor of PI3-K, the LMP2A-mediated inhibitory effects on TGF-beta 1-induced DNA fragmentation and cleavage of PARP were alleviated. Furthermore, LMP2A did not alter the levels of expression of type I and type II TGF-beta 1 receptors. Taken together, these results suggest that LMP2A may inhibit TGF-beta 1-mediated apoptosis through activation of the PI3-K/Akt pathway.  相似文献   

12.
In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line. Herein, we show that the activation of the pro-apoptotic protease caspase-3 upon IL-3 removal is suppressed by expression of activated Ras, which eventually prevents cell death. For caspase-3 suppression, the Raf/extracellular signal-regulated kinase (ERK)- or phosphatidylinositol 3-kinase (PI3-K)/Akt-mediated signaling pathway downstream of Ras was required. However, inhibition of both pathways did not block activated Ras-dependent suppression of cell death-associated phenotypes, such as nuclear DNA fragmentation. Thus, a pathway that is independent of both Raf/ERK and PI3-K/Akt pathways may function downstream of Ras, preventing activated caspase-3-initiated apoptotic processes. Conditional activation of c-Raf-1 also suppressed caspase-3 activation and subsequent cell death without affecting Akt activity, providing further evidence for a PI3-K/Akt-independent mechanism.  相似文献   

13.
Most proangiogenic factors exert their biological effects primarily by activating extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)/Akt signaling pathways. These pathways appear to play a critical role in endothelial cell migration, because selective inhibition of either ERK or PI3-K/Akt signaling almost completely prevented endothelial cell migration. Recently, we demonstrated that a truncated kringle domain of human apolipoprotein(a), termed rhLK68, inhibits endothelial cell migration in vitro. However, its mechanism of action was not well defined. In this study, we determined the effects of rhLK68 on ERK1/2 and PI3-K/Akt signaling pathways to explore the molecular mechanism of rhLK68-mediated inhibition of endothelial cell migration. Treatment with rhLK68 inhibited ERK1/2 phosphorylation but did not influence Akt activation. Interestingly, an inhibitor of protein-tyrosine phosphatase, sodium orthovanadate, dose-dependently reversed both rhLK68-induced dephosphorylation of ERK1/2 and decreased migration of endothelial cells, whereas rhLK68 showed no significant effects on MEKs phosphorylation. In conclusion, these results indicate that inhibition of endothelial cell migration by rhLK68 may be achieved by interfering with ERK1/2 activation via a protein-tyrosine phosphatase-dependent pathway.  相似文献   

14.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

15.
We have previously demonstrated that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling is essential for pancreatic regeneration after partial pancreatectomy in mice. In the present study, we examined a role of PI3K/Akt signaling for pancreatic duct cell differentiation into insulin-producing cells. Epithelial-like cells were isolated from mouse pancreas and confirmed to be positive for a duct cell marker cytokeratin-20 (CK-20) but negative for insulin. Incubation of these cells with epidermal growth factor, exhibited a gradual increase in Akt phosphorylation and expression of pancreatic duodenal homeobox-1 (PDX-1), a regulator of β-cell differentiation. Three weeks later, these CK-20-positive cells were noted to express insulin as determined by immunofluorescent double-staining. Akt phosphorylation, PDX-1 expression, and insulin production were effectively reduced by blocking the PI3K/Akt pathway using siRNA to the p85α regulatory subunit of PI3K. Our results demonstrate that PI3K/Akt activation has a critical role for pancreatic duct cell differentiation into insulin-producing cells.  相似文献   

16.
Copper is implicated in metabolic disorders, such as Wilson's disease or Alzheimer's disease. Analysis of signaling pathways regulating cellular survival and function in response to a copper stress is crucial for understanding the pathogenesis of such diseases. Exposure of human skin fibroblasts or HeLa cells to Cu(2+) resulted in a dose- and time-dependent activation of the antiapoptotic kinase Akt/protein kinase B, starting at concentrations as low as 3 microM. Only Cu(II), but not Cu(I), had this effect. Activation of Akt was accompanied by phosphorylation of a downstream target of Akt, glycogen synthase kinase-3. Inhibitors of phosphoinositide-3-kinase (PI3K) completely blocked activation of Akt by Cu(2+), indicating a requirement of PI3K for Cu(2+)-induced activation of Akt. Indeed, cellular PI3K activity was strongly enhanced after exposure to Cu(2+). Copper ions may lead to the formation of reactive oxygen species, such as hydrogen peroxide. Activation of Akt by hydrogen peroxide or growth factors is known to proceed via the activation growth factor receptors. In line with this, pretreatment with inhibitors of growth factor receptor tyrosine kinases blocked activation of Akt by hydrogen peroxide and growth factors, as did a src-family tyrosine kinase inhibitor or the broad-spectrum tyrosine kinase inhibitor genistein. Activation of Akt by Cu(2+), however, remained unimpaired, implying (i) that tyrosine kinase activation is not involved in Cu(2+) activation of Akt and (ii) that activation of the PI3K/Akt pathway by Cu(2+) is initiated independently of that induced by reactive oxygen species. Comparison of the time course of the oxidation of 2',7'-dichlorodihydrofluorescein in copper-treated cells with that of Akt activation led to the conclusion that production of hydroperoxides cannot be an upstream event in copper-induced Akt activation. Rather, both activation of Akt and generation of ROS are proposed to occur in parallel, regulating cell survival after a copper stress.  相似文献   

17.
Migration is a complex process that, besides its various physiological functions in embryogenesis and adult tissues, plays a crucial role in cancer cell invasion and metastasis. The focus of this study is the involvement and collaboration of Akt, focal adhesion kinase (FAK), and Src kinases in migration and invasiveness of colorectal cancer cells. We show that all three kinases can be found in one protein complex; nevertheless, the interaction between Akt and Src is indirect and mediated by FAK. Interestingly, induced Akt signaling causes an increase in tyrosine phosphorylation of FAK, but this increase is attenuated by the Src inhibitor SU6656. We also show that active Akt strongly stimulates cell migration, but this phenomenon is fully blocked by FAK knockdown or partly by inhibition of Src kinase. In addition, we found that all three kinases were indispensable for the successful invasion of colorectal cancer cells. Altogether, the presented data bring new insights into the mechanism how the phosphatidylinositol-3-kinase (PI3-K)/Akt pathway can influence migration of colorectal adenocarcinoma cells. Because FAK is indispensable for cell movements and functions downstream of Akt, our results imply FAK kinase as a potential key molecule during progression of tumors with active PI3-K/Akt signaling.  相似文献   

18.
Angiotensin II (Ang II) exerts contractile and trophic effects in glomerular mesangial cells (MCs). One potential downstream target of Ang II is the protein kinase Akt/protein kinase B (PKB). We investigated the effect of Ang II on Akt/PKB activity in MCs. Ang II causes rapid activation of Akt/PKB (5-10 min) but delayed activation of phosphoinositide 3-kinase (PI3-K) (30 min). Activation of Akt/PKB by Ang II was not abrogated by the PI3-K inhibitors or by the introduction of a dominant negative PI3-K, indicating that in MCs, PI3-K is not an upstream mediator of Akt/PKB activation by Ang II. Incubation of MCs with phospholipase A2 inhibitors also blocked Akt/PKB activation by Ang II. AA mimicked the effect of Ang II. Inhibitors of cyclooxygenase-, lipoxyogenase-, and cytochrome P450-dependent metabolism did not influence AA-induced Akt/PKB activation. However, the antioxidants N-acetylcysteine and diphenylene iodonium inhibited both AA- and Ang II-induced Akt/PKB activation. Dominant negative mutant of Akt/PKB or antioxidants, but not the dominant negative form of PI3-K, inhibited Ang II-induced protein synthesis and cell hypertrophy. These data provide the first evidence that Ang II induces protein synthesis and hypertrophy in MCs through AA/redox-dependent pathway and Akt/PKB activation independent of PI3-K.  相似文献   

19.
Stimulation of osteoblast survival signals may be an important mechanism of regulating bone anabolism. Protein kinase B (PKB/Akt), a serine-threonine protein kinase, is a critical regulator of normal cell growth, cell cycle progression, and cell survival. In this study we have investigated the signaling pathways activated by growth factors PDGF-BB, EGF, and FGF-2 and determined whether PDGF-BB, EGF, and FGF-2 activated Akt in human or mouse osteoblastic cells. The results demonstrated that both ERK1 and ERK2 were activated by FGF-2 and PDGF-BB. Activation of ERK1 and ERK2 by PDGF-BB and FGF-2 was inhibited by PD 098059 (100 microM), a specific inhibitor of MEK. Wortmannin (500 nM), a specific inhibitor of phosphatidylinositol 3-kinase ( PI 3-K), inhibited the activation of ERK1 and ERK2 by PDGF-BB but not by FGF-2 suggesting that PI 3-K mediated the activation of ERK MAPK pathway by PDGF-BB but not by FGF-2. Rapamycin, an inhibitor of p70 S6 protein kinase and a downstream target of ERK1/2 and PI 3-K, did not affect the activation of ERK1 and ERK2 by the growth factors. Furthermore, our results demonstrated that Akt, a downstream target of PI 3-K, was activated by PDGF-BB but not by FGF-2. Akt activation by PDGF-BB was inhibited by PI 3-kinase inhibitor LY294002. Rapamycin had no effect on Akt activation. Epidermal growth factor (EGF) also activated Akt in osteoblastic cells which was inhibited by LY294002 but not by rapamycin. Taken together, our data for the first time revealed that the activation of ERK1/2 by PDGF-BB is mediated by PI 3-K, and secondly, Akt is activated by PDGF-BB and EGF but not by FGF-2 in human and mouse osteoblastic cells. These results are of critical importance in understanding the role of these growth factors in apoptosis and cell survival. PDGF-BB and EGF but not FGF-2 may stimulate osteoblast cell survival.  相似文献   

20.
The E5 oncoprotein of bovine papillomavirus type 1 is a Golgi-resident, 44-amino acid polypeptide that can transform fibroblast cell lines by activating endogenous platelet-derived growth factor receptor beta (PDGF-R). However, the recent discovery of E5 mutants that exhibit strong transforming activity but minimal PDGF-R tyrosine phosphorylation indicates that E5 can potentially use additional signal transduction pathway(s) to transform cells. We now show that two classes of E5 mutants, despite poorly activating the PDGF-R, induce tyrosine phosphorylation and activation of phosphoinositide 3-kinase (PI 3-K) and that this activation is resistant to a selective inhibitor of PDGF-R kinase activity, tyrphostin AG1296. Consistent with this independence from PDGF-R signaling, the E5 mutants fail to induce significant cell proliferation in the absence of PDGF, unlike wild-type E5 or the sis oncoprotein. Despite differences in growth factor requirements, however, both wild-type E5 and mutant E5 cell lines form colonies in agarose. Interestingly, activation of PI 3-K occurs without concomitant activation of the ras-dependent mitogen-activated protein kinase pathway. The known ability of constitutively activated PI 3-K to induce anchorage-independent cell proliferation suggests a mechanism by which the mutant E5 proteins transform cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号