首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gran Chaco region of central South America has been settled by humans for only the last 4,000-5,000 years. To investigate population structure and variation in this region's indigenous population, we scored males from tribes of the Argentinean part of the Gran Chaco (Pilagá, Wichí, and Toba, representing two major language groups, the Mataco and Guaycurú) for a number of Y-chromosome polymorphisms. The markers included eight microsatellites (DYS19, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, and DYS439) and the unique native American single nucleotide polymorphism, DYS199. Sixty males (77%) from the total sample carried the DYS199T chromosome, and these were the focus of the present analysis. Unlike most other native Americans, Gran Chaco males show a moderate level of diversity at the DYS19 locus but still less than that seen in non-native Americans. The FST value for Y-chromosome markers in Gran Chaco was 0.107, a value that is more than double that found for mtDNA haplogroups in the same tribes but is not particularly high compared with other Y-chromosome studies. Phylogenetic trees based on all eight microsatellites showed relatively poor correlation of the tribes with either geography or language, and this is possibly explained by their ecology. They are seasonal hunters living in small bands, and under such circumstances drift will be a powerful evolutionary force. An UPGMA tree based on five microsatellites (DYS19, DYS390, DYS391, DYS392, and DYS393), however, showed a more positive relationship, suggesting that DYS437, DYS438, and DYS439 may behave differently from the other microsatellites. No association was found between maternal and paternal lineage distributions. The time to the most recent common ancestor of the DYS199T chromosome is calculated to lie between 13,000 and 26,000 years. This range is consistent with estimates from other Y-chromosome studies as well as with estimates from mtDNA and the archeology of the colonization of South America. We conclude that the male lineages present in the contemporary Gran Chaco population reflect the level of diversity found in South America and that the region's male founders did not carry a restricted gene pool.  相似文献   

2.
We investigated the genetic differentiation of five X-chromosome STR markers among five native South American Amerindian populations inhabiting three different areas of the Gran Chaco: Mocoví, Chorote, Wichí, Lengua, and Ayoreo. The observed genetic structure showed correspondence with geographic distribution more clearly than previous information obtained from autosomal STRs for the same samples. On the other hand, X-chromosome STR data did not agree with linguistic affinities. These markers proved to be informative for the study of the native populations of the Gran Chaco region.  相似文献   

3.
The mtDNA of most Native Americans has been shown to cluster into four lineages, or haplogroups. This study provides data on the haplogroup affiliation of nearly 500 Native North Americans including members of many tribal groups not previously studied. Phenetic cluster analysis shows a fundamental difference among 1) Eskimos and northern Na-Dene groups, which are almost exclusively mtDNA haplogroup A, 2) tribes of the Southwest and adjacent regions, predominantly Hokan and Uto-Aztecan speakers, which lack haplogroup A but exhibit high frequencies of haplogroup B, 3) tribes of the Southwest and Mexico lacking only haplogroup D, and 4) a geographically heterogeneous group of tribes which exhibit varying frequencies of all four haplogroups. There is some correspondence between language group affiliations and the frequencies of the mtDNA haplogroups in certain tribes, while geographic proximity appears responsible for the genetic similarity among other tribes. Other instances of similarity among tribes suggest hypotheses for testing with more detailed studies. This study also provides a context for understanding the relationships between ancient and modern populations of Native Americans. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The present study was undertaken to determine the extent of diversity at 12 microsatellite short tandem repeat (STR) loci in seven primitive tribal populations of India with diverse linguistic and geographic backgrounds. DNA samples of 160 unrelated individuals were analyzed for 12 STR loci by multiplex polymerase chain reaction (PCR). Gene diversity analysis suggested that the average heterozygosity was uniformly high ( >0.7) in these groups and varied from 0.705 to 0.794. The Hardy-Weinberg equilibrium analysis revealed that these populations were in genetic equilibrium at almost all the loci. The overall G(ST) value was high (G(ST) = 0.051; range between 0.026 and 0.098 among the loci), reflecting the degree of differentiation/heterogeneity of seven populations studied for these loci. The cluster analysis and multidimensional scaling of genetic distances reveal two broad clusters of populations, besides Moolu Kurumba maintaining their distinct genetic identity vis-à-vis other populations. The genetic affinity for the three tribes of the Indo-European family could be explained based on geography and Language but not for the four Dravidian tribes as reflected by the NJT and MDS plots. For the overall data, the insignificant MANTEL correlations between genetic, linguistic and geographic distances suggest that the genetic variation among these tribes is not patterned along geographic and/or linguistic lines.  相似文献   

5.
Indian subcontinent harbours both the human mtDNA macrohaplogroups M and N, of which M is the most prevalent. In this study, we discuss the overall distribution of the various haplogroups and sub-haplogroups of M among the different castes and tribes to understand their diverse pattern with respect to geographical location and linguistic affiliation of the populations. An overview of about 170 studied populations, belonging to four distinct linguistic families and inhabiting different geographic zones, revealed wide diversity of about 22 major haplogroups of M. The tribal populations belonging to the same linguistic family but inhabiting different geographical regions (Dravidian and Austro-Asiatic speakers) exhibited differences in their haplogroup diversity. The northern and southern region castes showed greater diversity than the castes of other regions.  相似文献   

6.
We analyzed the frequency of four mitochondrial DNA haplogroups in 424 individuals from 21 Colombian Amerindian tribes. Our results showed a high degree of mtDNA diversity and genetic heterogeneity. Frequencies of mtDNA haplogroups A and C were high in the majority of populations studied. The distribution of these four mtDNA haplogroups from Amerindian populations was different in the northern region of the country compared to those in the south. Haplogroup A was more frequently found among Amerindian tribes in northern Colombia, while haplogroup D was more frequent among tribes in the south. Haplogroups A, C and D have clinal tendencies in Colombia and South America in general. Populations belonging to the Chibcha linguistic family of Colombia and other countries nearby showed a strong genetic differentiation from the other populations tested, thus corroborating previous findings. Genetically, the Ingano, Paez and Guambiano populations are more closely related to other groups of south eastern Colombia, as also inferred from other genetic markers and from archeological data. Strong evidence for a correspondence between geographical and linguistic classification was found, and this is consistent with evidence that gene flow and the exchange of customs and knowledge and language elements between groups is facilitated by close proximity.  相似文献   

7.
The Xianbei existed as a remarkable nomadic tribe in northeastern China for three dynasties: the Han, Jin, and Northern-Southern dynasties (206 BC to 581 AD) in Chinese history. A very important subtribe of the Xianbei is the Murong Xianbei. To investigate the genetic structure of the Murong Xianbei population and to address its genetic relationships with other nomadic tribes at a molecular level, we analyzed the control region sequences and coding-region single nucleotide polymorphism markers of mtDNA from the remains of the Lamadong cemetery of the Three-Yan Culture of the Murong Xianbei population, which is dated to 1,600-1,700 years ago. By combining polymorphisms of the control region with those from the code region, we assigned 17 individuals to haplogroups B, C, D, F, G2a, Z, M, and J1b1. The frequencies of these haplogroups were compared with those of Asian populations and a multidimensional scaling graph was constructed to investigate relationships with other Asian populations. The results indicate that the genetic structure of the Lamadong population is very intricate; it has haplogroups prevalent in both the Eastern Asian and the Siberian populations, showing more affinity with the Eastern Asian populations. The present study also shows that the ancient nomadic tribes of Huns, Tuoba Xianbei, and Murong Xianbei have different maternal genetic structures and that there could have been some genetic exchange among them.  相似文献   

8.
云南16个少数民族群体的线粒体DNA多态性研究   总被引:6,自引:1,他引:6  
利用PCR—RFLP法对傣族、白族、蒙古族、彝族等10个少数民族的16个群体共654人进行了mtDNA编码区多态性分析,共检测到17种单倍群,其中4种为未能确认的单倍群。单倍群频率分布和主成分图共同显示,百越系的3个民族共6个群体有高频的B、F单倍群,聚集在图的下部,表现出鲜明的南方群体特征;蒙古族的2个群体有高频的A、D单倍群,聚在图的上部,具有典型的北方群体特征;氐羌系的5个民族共7个群体全部或绝大多数都兼有南北方高频单倍群,位于图的中间,提示他们同时具有南北方群体的一些母系遗传特征。同一民族不同群体间的单倍群频率分布存在差异,但差异不很大,一般小于不同族源民族间的差异,但不一定都小于同一族源民族间的差异。  相似文献   

9.
This study reevaluates the hypothesis in Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203) that Gran Chaco peoples demonstrate a unique pattern of genetic diversity due to a distinct regional population history. Specifically, they found populations in the central part of the Gran Chaco, or Central Chaco, to have higher within- and lower between-population mitochondrial DNA (mtDNA) haplogroup frequency variation compared to populations in other South American regions. To test this hypothesis of regional uniqueness, we applied analytical and simulation methods to mtDNA first hypervariable (HVI) region sequence data from a broad set of comparative South and Central American population samples. Contrary to the results of Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203), we found that the Gran Chaco's regional within-population diversity is about average among regions, and populations are highly differentiated from each other. When we limited the scale of analysis to the Central Chaco, a more localized subregion of the Gran Chaco, our results fell more in line with the original findings of Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203). Still, we conclude that neither the Gran Chaco regional pattern, nor the Central Chaco subregional pattern, is unique within South America. Nonetheless, the Central Chaco pattern accords well with the area's history, including pre-European contact lifeways and the documented historical use of the area as an interregional crossroads. However, we cannot exclude post-European contact disruption of traditional mating networks as an equally plausible explanation for the observed diversity pattern. Finally, these results additionally inform broader models of South American genetic diversity. While other researchers proposed an east-west continental division in patterns of genetic variation (e.g., Fuselli et al. 2003 Mol. Biol. Evol. 20:1682-1691), we found that in the geographically intermediate Central Chaco, a strict east-west divide in genetic variation breaks down. We suggest that future genetic characterizations of the continent, and subsequent interpretations of evolutionary history, involve a broad regional sampling of South American populations.  相似文献   

10.
This study provides the frequencies of four mitochondrial DNA (mtDNA) haplogroups of 233 native South Amerindians in eight populations living in the Beni Department of Bolivia, including six populations not previously studied. Linguistically, these populations belong to the three principal South Amerindian language stocks, Andean, Equatorial-Tucanoan, and Ge-Pano-Carib. Frequency analyses under geographic, historic, linguistic, and genetic configurations using the theta statistic of Weir (Weir 1990) and analysis of molecular variance (AMOVA) show similar results. Results are also similar when phenetic cluster is used. Aymara belongs almost exclusively to haplogroup B, Quechua- and Moseten-speaking tribes belong to haplogroups A and B, but the first tribe presents high frequencies of haplogroup B. Yuracare, Trinitario, and Ignaciano exhibit high frequencies of A, B, and C haplogroups, and the Movima present a large proportion of haplogroup C. There is some correspondence between mtDNA haplogroup frequencies and language affiliation and historical connections, but less so with geographic aspects. The present study provides a context for understanding the relationship between different Amerindian populations living in a multiethnic area of Bolivia.  相似文献   

11.
Anthropogenic habitat alteration has the capacity to alter the distribution of species. Capybara (Hydrochoerus hydrochaeris) are a widely distributed rodent throughout most of South America, but are restricted to areas of standing water. As the Gran Chaco ecosystem of Paraguay is converted from dry tropical forest to pastureland, we hypothesize that this alteration creates potential for invasion by capybara into newly fragmented areas. We surveyed throughout the Chaco to estimate the distribution of capybara, and we collected noninvasive genetic samples. We used ecological niche modeling based on six environmental or climatic variables, and we modeled both the current distribution of capybara and the distribution of capybara 80 years ago. We then verified the hypothesized demographic signal generated with our model using phylogeographic analyses of 386 bp of the mtDNA control region. Comparison of present and past models suggested that populations expanded into the Gran Chaco after forest was converted to pastureland. Analyses of the mitochondrial D‐loop supported the rapid range expansion scenario. We also found evidence of secondary contact of two distinct phylogroups which had previously been disjunct. Anthropogenic land transformation appeared to be a major factor influencing the distribution, as predicted by the niche model and confirmed by genetic data. Habitat modification altered connectivity of populations across the landscape. In addition, long separated clades of capybara are now admixed throughout the Paraguayan Chaco. The invasion of a large bodied herbivore into the High Chaco region may exacerbate the degradation of forest and prevent forest regeneration. As the reservoir host of several zoonotic diseases, the expansion and contact of two previously disjunct capybara populations has implications for disease emergence.  相似文献   

12.
BACKGROUND AND AIMS: Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) is an endemic tree from the Brazilian cerrado (savanna vegetation), a biome classified as a hotspot for conservation priority. This study investigates the phylogeographic structure of H. stigonocarpa, in order to understand the processes that have led to its current spatial genetic pattern. METHODS: The polymorphism level and spatial distribution of variants of the plastid non-coding region between the genes psbC and trnS were investigated in 175 individuals from 17 populations, covering the greater part of the total distribution of the species. Molecular diversity indices were calculated and intra-specific relationships were inferred by the construction of haplotype networks using the median-joining method. Genetic differentiation among populations and main geographical groups was evaluated using spatial analysis of molecular variance (SAMOVA). KEY RESULTS: Twenty-three different haplotypes were identified. The level of differentiation among the populations analysed was relatively high (F(ST) = 0.692). Phylogeographic analyses showed a clear association between the haplotype network and geographic distribution of populations, revealing three main geographical groups: western, central and eastern. SAMOVA corroborated this finding, indicating that most of the variation can be attributed to differences among these three groups (58.8 %), with little difference among populations within groups (F(SC) = 0.252). CONCLUSIONS: The subdivision of the geographic distribution of H. stigonocarpa populations into three genetically differentiated groups can be associated with Quaternary climatic changes. The data suggest that during glacial times H. stigonocarpa populations became extinct in most parts of the southern present-day cerrado area. Milder climatic conditions in the north and eastern portions of the cerrado resulted in maintenance of populations in these regions. Thus it is inferred that the most southern part of the present-day cerrado was re-colonized by different lineages from northern parts of this biome, after postglacial climate amelioration.  相似文献   

13.
Mitochondrial DNA (mtDNA) is characterized by high variability, maternal inheritance, and absence of recombination. Studies of human populations have revealed ancestral associated polymorphisms whose combination defines groups of mtDNA types (haplogroups) that are currently used to reconstruct human evolution lineages. We used such inherited mtDNA markers to compare mtDNA population pools between a sample of individuals selected for successful aging and longevity (212 subjects older than 100 years and in good clinical condition) and a sample of 275 younger individuals (median age 38 years) carefully matched as to sex and geographic origin (northern and southern Italy). All nine haplogroups that are typical of Europeans were found in both samples, but male centenarians emerged in northern Italy as a particular sample: 1) mtDNA haplogroup frequency distribution was different between centenarians and younger individuals (P=0.017 by permutation tests); and 2) the frequency of the J haplogroup was notably higher in centenarians than in younger individuals (P=0.0052 by Fisher exact test). Since haplogroups are defined on the basis of inherited variants, these data show that mtDNA inherited variability could play a role in successful aging and longevity.  相似文献   

14.
Genetic affinities between aboriginal Taiwanese and populations from Oceania and Southeast Asia have previously been explored through analyses of mitochondrial DNA (mtDNA), Y chromosomal DNA, and human leukocyte antigen loci. Recent genetic studies have supported the “slow boat” and “entangled bank” models according to which the Polynesian migration can be seen as an expansion from Melanesia without any major direct genetic thread leading back to its initiation from Taiwan. We assessed mtDNA variation in 640 individuals from nine tribes of the central mountain ranges and east coast regions of Taiwan. In contrast to the Han populations, the tribes showed a low frequency of haplogroups D4 and G, and an absence of haplogroups A, C, Z, M9, and M10. Also, more than 85% of the maternal lineages were nested within haplogroups B4, B5a, F1a, F3b, E, and M7. Although indicating a common origin of the populations of insular Southeast Asia and Oceania, most mtDNA lineages in Taiwanese aboriginal populations are grouped separately from those found in China and the Taiwan general (Han) population, suggesting a prevalence in the Taiwanese aboriginal gene pool of its initial late Pleistocene settlers. Interestingly, from complete mtDNA sequencing information, most B4a lineages were associated with three coding region substitutions, defining a new subclade, B4a1a, that endorses the origin of Polynesian migration from Taiwan. Coalescence times of B4a1a were 13.2 ± 3.8 thousand years (or 9.3 ± 2.5 thousand years in Papuans and Polynesians). Considering the lack of a common specific Y chromosomal element shared by the Taiwanese aboriginals and Polynesians, the mtDNA evidence provided here is also consistent with the suggestion that the proto-Oceanic societies would have been mainly matrilocal.  相似文献   

15.
C. J. Kolman  N. Sambuughin    E. Bermingham 《Genetics》1996,142(4):1321-1334
High levels of mitochondrial DNA (mtDNA) diversity were determined for Mongolian populations, represented by the Mongol-speaking Khalkha and Dariganga. Although 103 samples were collected across Mongolia, low levels of genetic substructuring were detected, reflecting the nomadic lifestyle and relatively recent ethnic differentiation of Mongolian populations. mtDNA control region I sequence and seven additional mtDNA polymorphisms were assayed to allow extensive comparison with previous human population studies. Based on a comparative analysis, we propose that indigenous populations in east Central Asia represent the closest genetic link between Old and New World populations. Utilizing restriction/deletion polymorphisms, Mongolian populations were found to carry all four New World founding haplogroups as defined by WALLACE and coworkers. The ubiquitous presence of the four New World haplogroups in the Americas but narrow distribution across Asia weakens support for GREENBERG and coworkers' theory of New World colonization via three independent migrations. The statistical and geographic scarcity of New World haplogroups in Asia makes it improbable that the same four haplotypes would be drawn from one geographic region three independent times. Instead, it is likely that founder effects manifest throughout Asia and the Americas are responsible for differences in mtDNA haplotype frequencies observed in these regions.  相似文献   

16.
Polymorphisms in mitochondrial (mt) DNA and Y-chromosomes of seven socially and linguistically diverse castes and tribes of Eastern India were examined to determine their genetic relationships, their origin, and the influence of demographic factors on population structure. Samples from the Orissa Brahmin, Karan, Khandayat, Gope, Juang, Saora, and Paroja were analyzed for mtDNA hypervariable sequence (HVS) I and II, eight Y-chromosome short tandem repeats (Y-STRs), and lineage-defining mutations diagnostic for Indian- and Eurasian-specific haplogroups. Our results reveal that haplotype diversity and mean pairwise differences (MPD) was higher in caste groups of the region (>0.998, for both systems) compared to tribes (0.917-0.996 for Y-STRs, and 0.958-0.988 for mtDNA haplotypes). The majority of paternal lineages belong to the R1a1, O2a, and H haplogroups (62.7%), while 73.2% of maternal lineages comprise the Indian-specific M*, M5, M30, and R* mtDNA haplogroups, with a sporadic occurrence of West Eurasian lineages. Our study reveals that Orissa Brahmins (a higher caste population) have a genetic affinity with Indo-European speakers of Eastern Europe, although the Y-chromosome data show that the genetic distances of populations are not correlated to their position in the caste hierarchy. The high frequency of the O2a haplogroup and absence of East Asian-specific mtDNA lineages in the Juang and Saora suggest that a migration of Austro-Asiatic tribes to mainland India was exclusively male-mediated which occurred during the demographic expansion of Neolithic farmers in southern China. The phylogeographic analysis of mtDNA and Y-chromosomes revealed varied ancestral sources for the diverse genetic components of the populations of Eastern India.  相似文献   

17.
Mitochondrial DNA sequence variation in Greeks.   总被引:1,自引:0,他引:1  
Mitochondrial DNA (mtDNA) control region sequences were determined in 54 unrelated Greeks, coming from different regions in Greece, for both segments HVR-I and HVR-II. Fifty-two different mtDNA haplotypes were revealed, one of which was shared by three individuals. A very low heterogeneity was found among Greek regions. No one cluster of lineages was specific to individuals coming from a certain region. The average pairwise difference distribution showed a value of 7.599. The data were compared with that for other European or neighbor populations (British, French, Germans, Tuscans, Bulgarians, and Turks). The genetic trees that were constructed revealed homogeneity between Europeans. Median networks revealed that most of the Greek mtDNA haplotypes are clustered to the five known haplogroups and that a number of haplotypes are shared among Greeks and other European and Near Eastern populations.  相似文献   

18.
Genetic diversity within and among three wild-type natural populations and one melanic laboratory population of Mythimna separata (Walker) (Lepidoptera: Noctuidae) were evaluated using amplified fragment length polymorphism (AFLP) analysis. Although extensive genetic diversity occurs among individuals from different geographic populations (P = 54.5%, h = 0.209, I = 0.305), the majority of the genetic diversity is within populations and not between populations (G(ST) = 0.172), indicating high gene flow (N(M) = 2.403) and suggesting that M. separata in northern China are a part of a single large metapopulation. Genetic diversity in the natural populations was significantly higher than that in the melanic laboratory population (with P = 43.4% versus P = 25.9%, h = 0.173 versus h = 0.086, and I = 0.251 versus I = 0.127), suggesting that the melanic laboratory population is narrowly genetic-based and genetically uniform. Genetic similarities based on AFLP data were calculated, and cluster analysis was preformed to graphically display groupings between individuals and populations. Individuals from the same region were not grouped together in cluster analysis of three natural populations, whereas melanic individuals from laboratory population were grouped together very well. Four subpopulations were clustered into two broad groups. Melanic laboratory population became a single group, which had apparent differentiation from the other group in which three natural subpopulations were included. These results indicated that although high genetic variability existed among the individuals of natural populations, there was little genetic differentiation among three geographic populations that could be explained by the effects of the long distance migration of the oriental armyworm in China enhanced the level of gene flow. Influences of migration on the genetic polymorphism and differentiations that make a significant contribution to evolution in this insect are reviewed.  相似文献   

19.
In this study, we analyzed the mitochondrial DNA (mtDNA) variation in 202 individuals representing one Itel'men and three Koryak populations from different parts of the Kamchatka peninsula. All mtDNAs were subjected to high resolution restriction (RFLP) analysis and control region (CR) sequencing, and the resulting data were combined with those available for other Siberian and east Asian populations and subjected to statistical and phylogenetic analysis. Together, the Koryaks and Itel'men were found to have mtDNAs belonging to three (A, C, and D) of the four major haplotype groups (haplogroups) observed in Siberian and Native American populations (A–D). In addition, they exhibited mtDNAs belonging to haplogroups G, Y, and Z, which were formerly called “Other” mtDNAs. While Kamchatka harbored the highest frequencies of haplogroup G mtDNAs, which were widely distributed in eastern Siberian and adjacent east Asian populations, the distribution of haplogroup Y was restricted within a relatively small area and pointed to the lower Amur River–Sakhalin Island region as its place of origin. In contrast, the pattern of distribution and the origin of haplogroup Z mtDNAs remained unclear. Furthermore, phylogenetic and statistical analyses showed that Koryaks and Itel'men had stronger genetic affinities with eastern Siberian/east Asian populations than to those of the north Pacific Rim. These results were consistent with colonization events associated with the relatively recent immigration to Kamchatka of new tribes from the Siberian mainland region, although remnants of ancient Beringian populations were still evident in the Koryak and Itel'men gene pools. Am J Phys Anthropol 108:1–39, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Mitochondrial DNA (mtDNA) haplogroups were determined by restriction fragment length polymorphism-typing for 66 individuals from four southeastern North American populations, and the HVS I portion of the mtDNA control region was sequenced in 48 of these individuals. Although populations from the same geographic region usually exhibit similar haplogroup frequency distributions (Lorenz and Smith [1996] Am. J. Phys. Anthropol. 101:307-323; Malhi et al. [2001] Hum. Biol. 73:17-55), those from the Southeast instead exhibit haplogroup frequency distributions that differ significantly from one another. Such divergent haplogroup frequency distributions are unexpected for the Muskogean-speaking southeastern populations, which share many sociocultural traits, speak closely related languages, and have experienced extensive admixture both with each other and with other eastern North American populations. Independent origins, genetic isolation from other Native American populations due to matrilocality, differential admixture, or a genetic bottleneck could be responsible for this heterogeneous distribution of haplogroup frequencies. Within a given haplogroup, however, the HVS I sequences from the four Muskogean-speaking populations appear relatively similar to one another, providing evidence for close relationships among them and for reduced diversity within haplogroups in the Southeast. Given additional archaeological, linguistic, and ethnographic evidence, these results suggest that a genetic bottleneck associated with the historical population decline is the most plausible explanation for such patterns of mtDNA variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号