首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
The regulation of nucleic acid and protein synthesis in dormant, thermodormant, and after-ripened embryos of Vaccaria pyramidata (Caryophyllaceae) has been studied. Germination of after-ripened V. pyramidata seeds is prevented by inhibitors of protein, RNA, and DNA synthesis. The synthesis of both protein and RNA is activated at the beginning of imbibition, whereas [3H]thymidine incorporation does not start until the second period of the imbibition phase. [3H]Thymidine incorporation is greatly reduced in embryos treated with cycloheximide or 6-methylpurine. There is no correlation between the level of [3H]uracil and l-[14C]leucine incorporation into macromolecules and the physiological state of the seeds: tRNA, ribosomal RNA, and poly(A)-containing RNA (probably mRNA) as well as proteins are synthesized at the same rate in both dormant and thermodormant embryos as in after-ripened embryos. The protein patterns of dormant and after-ripened embryos are similar, as shown by electrophoresis and electrofocusing of double-labeled proteins. The level of DNA synthesis, measured as [3H]thymidine incorporation, may, on the other hand, indicate the physiological activity of the seeds: [3H]Thymidine is incorporated at a high rate in after-ripened embryos only and remains at a low level in dormant or thermodormant embryos. This correlation is, however, observed only in the axes. DNA synthesis in the cotyledons does not show any relation to the developmental stage of the seeds. These results are discussed in relation to the regulation of dormancy and after-ripening of seeds.  相似文献   

2.
Seed germination of Agrostemma githago is prevented by inhibitors of protein and RNA synthesis. Thus protein as well as RNA synthesis are essential prerequisites for germination. Early protein synthesis of Agrostemnia embryos can be completely inhibited by cycloheximide and cordycepin. During the aging of seeds there is a considerable decrease in germination capacity and protein synthesis. In dormant and afterripened embryos of Agrostemma githago14C-leucine and 14C-uracil are incorporated in protein and RNA respectively with nearly the same intensity, whereas RNA and protein synthesis of dormant seeds and embryos starts earlier than in those subjected to afterripening. 3H-uracil-labelled RNA from dormant and afterripened embryos are able to hybridize on oligo-dT-cellulose to the same extent. There is a similarity in the protein pattern of dormant and afterripened embryos revealed by electrophoresis in polyacrylamide gels of double-labelled proteins. According to these results dormancy of Agrostemma githago is not caused by a general but by a specific metabolic block.  相似文献   

3.
The time course of protein synthesis in embryos of dormant and afterripened Agrostemma githago seeds was studied. In embryos of afterripened geminating seeds, protein synthesis increased in three successive stages: (a) concurrent with swelling; (b) during the lag phase between the completion of water uptake and the onset of growth; and (c) immediately after protrusion through the seed coat. Embryos of dormant seeds showed the first increase but not the second unless dormancy was broken by imbibition at 4°C. This indicates that dormancy affects processes prior to the onset of growth. The third increase was largely due to higher oxygen availability after the rupture of the seed coat and not to actual growth. It could also be elicited in dormant embryos by isolating them from the seeds.

Electrophoretic analysis of the newly synthesized proteins demonstrated that the patterns of dormant and afterripened embryos became significantly different in both axes and cotyledons only just prior to the onset of axis elongation. Thereafter, the differences became larger.

When afterripened or dormant seeds were transferred from a low, germination-permitting to a high, germination-inhibiting temperature, the seeds germinated at the high temperature if they had completed the lag phase to a sufficient extent at the low temperature. This shows that the processes during the lag phase were inhibited by the high temperature while the onset of growth was not affected.

  相似文献   

4.
A transient increase in protein synthesis was observed in mitochondria at the mesenchyme blastula stage of sea urchin ( Hemicentrotus pulcherrimus ) embryos. This stimulated activity was inhibited by chloramphenicol but not by cycloheximide. Reconstituting experiments in which poly U-dependent protein synthesis was carried out showed the mitochondrial peptide elongation factor to be essential for increasing the protein synthetic activity in mesenchyme blastula, but aminoacyl tRNA synthetase and ribosome fraction containing initiation factor not to be involved in this increase. These findings are discussed in relation to the differentiation of embryos at the gastrulation stage.  相似文献   

5.
6.
Regulation of protein synthesis can be exercised at a number of levels. One of the more experimentally difficult levels to approach has been the measurement of peptide elongation rate. This paper presents a new application of the cyanogen bromide (CNBr) cleavage of proteins in a direct measurement of histone peptide elongation rate in cleaving sea urchin embryos (Strongylocentrotus purpuratus). The data indicate an elongation rate (at 15°C) for histones H2B and H1α of 0.69 and 0.80 codons per s, respectively. These values fall within the range of previously published values of average peptide elongation rate for total protein in these cells. This method should be generally applicable to many systems for which the measurement of peptide elongation rate may provide a key to the understanding of the regulation of protein synthesis.  相似文献   

7.
A comparative study of protein synthesis has been carried out with embryos excised from dormant (D) and non-dormant (ND) caryopses of the wild oat. Although D embryos imbibed in water or ND embryos imbibed in abscisic acid do not germinate, they incorporate [14C]leucine into TCA-insoluble material for the first 48 h as readily as embryos that do germinate (ND embryos imbibed in water, or D embryos imbibed in gibberellic acid). Pulsechase experiments with [14]leucine show that in both D and ND embryos the proteins associated with the membranes undergo turnover. The rates of decay of incorporated radioactivity are similar in both dormant and germinating embryos up to 98 h following embryo excision. Fractionation of the membrane proteins in SDS-polyacrylamide gels indicates that the different polypeptides have different rates of turnover. It is concluded that membrane proteins in imbibed D embryos are in a state of constant turnover, and that this is a part of the replacement processes necessary to maintain the integrity of hydrated cells. The continuation of such synthetic events could account for long term survival of dormant Avena fatua in the imbibed state.Abbreviations CCRSE cytochrome relative stain equivalents - D dormant - ND nondormant - ABA abscisic acid - GA gibberellic acid GA3  相似文献   

8.
Dormant and non-dormant barley (Hordeum distichum L.) grains with identical genetic backgrounds were obtained by maturing grains under different climate conditions. When isolated embryos from dormant grains were incubated in a well containing a fixed volume of water (300 l), the germination rate and percentage were dependent on the embryo number per well. A higher embryo number per well was correlated with a lower germination rate and percentage. However, this was not the case for the embryos isolated from nondormant grains. During germination, the endogenous cis-abscisic acid (ABA) in isolated embryos from both dormant and nondormant grains was analyzed. The inhibitory effect on germination of a higher number per well of isolated dormant embryos was due to diffusion of endogenous ABA out of the embryos and accumulation of ABA in the incubation medium. Moreover, there was de-novo synthesis of ABA in embryos isolated from dormant grains during incubation but not in embryos isolated from nondormant grains. The inhibitory effect of ABA on germination of embryos isolated from dormant grains could be mimicked by addition of ABA or the medium in which dormant embryos had been placed. Embryos isolated from nondormant grains were insensitive to addition of ABA and medium from dormant embryos. Our results demonstrate that diffusion of endogenous ABA, de-novo ABA synthesis and ABA sensitivity play a role in the control of germination. It is proposed that dormancy-breaking treatments act via changes to these processes.Abbreviations ABA cis-abscisic acid - E/W embryo(s) per well Prof. K.R. Libbenga (Institute of Molecular Plant Sciences, Leiden University) is thanked for fruitful discussions. B.V.D. was partly supported by E.E.C. BIOTECH program PL 920175.  相似文献   

9.
10−5M abscisic acid (ABA) completely inhibits germination or (if seeds deprived of integuments are used) embryo elongation in Haplopappus gracilis (Nutt.) Gray. Nevertheless, considerable rates of protein and RNA synthesis were found in embryos grown in abscisic acid, at least during the early hours after sowing. On the contrary, seeds grown in cycloheximide + fusicoccin (a powerful promoter of cell expansion), where protein synthesis is almost completely inhibited, show full protrusion of radicle, thus simulating a "germination" process. These results suggest that some of the most important events involved in seed germination, i.e. protein and RNA synthesis, and cell elongation which leads to radicle protrusion, may not necessarily be linked together and are possibly regulated by different control mechanisms. Moreover, when seeds or embryos are grown in abscisic acid + fusicoccin, protein synthesis is considerable, cell elongation is greater than in water controls at least for 12 h, and germination in its early stages appears to be normal; but DNA synthesis and cell division are not resumed, possibly since some other factor is required. All these findings propose a reevaluation of criteria for defining successful germination.  相似文献   

10.
Geert Jan de Klerk 《Planta》1981,153(6):524-529
Isolated embryos are more suitable for in vivo study of protein synthesis than non-isolated embryos because, after isolation, the uptake of labeled amino acids is about 1000 times higher. However, isolation also stimulates protein synthesis: Up to 4 h after isolation, the capacity to incorporate labeled amino acids increased 7 times. Therefore, data on incorporation obtained with isolated embryos cannot be extended to non-isolated embryos. The increase of protein synthesis was not due to synthesis of specific proteins, but was a general increase. Furthermore, ripening, dormant, and afterripened embryos showed the same degree of increase. Isolation therefore stimulates protein synthesis nonspecifically. When embryos were kept under anaerobic conditions after isolation, protein synthesis did not increase. Therefore, higher oxygen consumption after removal of the seedcoat is probably the cause of the higher incorporation capacity. Furthermore, the activation of protein synthesis lagged several hours behind the increase of oxygen consumption.Abbreviations A afterripened - D dormant - pre-rRNA precursor of ribosomal RNA  相似文献   

11.
The timing of the auxin response was followed in oat and corn coleoptile tissue by a sensitive optical method in which the elongation of about a dozen coleoptile segments was recorded automatically. The response possesses a latent period of about 10 min at 23°C, which is extended by low concentrations of KCN or by reducing the temperature, but is not extended by pretreatments with actinomycin D, puromycin, or cycloheximide at concentrations that partially inhibit the elongation response. Analysis of the data indicates that auxin probably does not act on the elongation of these tissues by promoting the synthesis of informational RNA or of enzymatic protein. Not excluded is the possibility that auxin acts at the translational level to induce synthesis of a structural protein, such as cell wall protein or membrane protein. While the data do not provide direct support for this hypothesis, the speed with which cycloheximide inhibits elongation suggests that continual protein synthesis may be important in the mechanism of cell wall expansion.  相似文献   

12.
Protein synthesis is the final step of gene expression in all cells. In order to understand the regulation of this process, it is important to have an accurate model that incorporates the regulatory steps. The model presented in this paper is composed of set of differential equations which describe the dynamics of the initiation process and its control, as well as peptide elongation, starting with the amino acids available for peptide creation. A novel approach for modeling the elongation process permits useful prediction of protein production and consumption of energy and amino acids, as well as ribosome loading rate and ribosome spacing on the mRNA. An erratum to this article can be found at  相似文献   

13.
Translationally active plasmodia of the syncytial slime mold Physarum polycephalum develop into translationally dormant sclerotia during starvation. Although functional mRNA and ribosomes exist in sclerotia, protein synthesis is suppressed at the level of initiation. To test the possibility that alterations in the cytoskeleton may limit protein synthesis, we have examined the distribution of polysomes and actin mRNA in the cytoskeletal (CSK) and soluble (SOL) fractions of Triton X-100-extracted plasmodia and sclerotia. Most of the polysomes and actin mRNA were located in the CSK of plasmodia, while most of the ribosomes and actin mRNA were located in the SOL of sclerotia. The results suggest that ribosomes and mRNA shift from the CSK to the SOL as protein synthesis is suppressed during starvation. Plasmodia and sclerotia can be induced to accumulate excess polysomes by treatment with low levels of the elongation inhibitor cycloheximide. Treatment of plasmodia with cycloheximide caused excess polysomes to accumulate in the SOL, suggesting that the CSK contains a limited capacity for binding translational components and that the association of polysomes with the cytoskeleton is not required for protein synthesis. Treatment of sclerotia with cycloheximide, however, caused polysomes and actin mRNA to accumulate in the CSK, suggesting that the sclerotial cytoskeleton, although depleted in ribosomes and mRNA, is capable of binding translational components. It is concluded that alterations in the sclerotial cytoskeleton are not involved in translational control.  相似文献   

14.
The rate of oxidation of glucose is reduced in mouse embryos in the prolonged free living phase associated with delayed implantation and increases when the embryos are reactivated by estrogen. To determine how these changes in metabolism are regulated, several aspects of glucose metabolism were evaluated in dormant and reactivated blastocysts: 1) Embryos were exposed to 14C-pyruvate in vitro and evolved 14CO2 was measured. It was found that the rate of production of CO2 was equal in the two types of blastocysts, suggesting that aerobic pathways are fully functional during delayed implantation. 2) Production of lactate in the presence of O2 was measured and a decrease of 30% was found in delayed implanting embryos, suggesting that the overall regulatory mechanism for glucose metabolism resides in the glycolytic portion of the pathway. 3) Capacity for uptake and phosphorylation of glucose was evaluated using 3H-2-deoxyglucose and was found to be equal in the two types of embryos. 4) Total amounts of the rate-controlling enzymes for glycolysis (i.e., hexokinase and phosphofructokinase) in lysates of delayed and reactivated embryos were found to be equal, indicating that amounts of these enzymes are not limiting in delayed implantation. 5) Lactate production, measured under anaerobic conditions, was found to be equal, demonstrating that it is not the capacity for glycolysis but a difference in the degree of allosteric inhibition that is responsible for reduced glucose oxidation in delayed implantation. 6) Levels of ATP, ADP, and hexose-6-phosphates were found to be consistent with allosteric inhibition of the glycolytic pathway at phosphofructokinase during delay and a release of this inhibition with reactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Regulation at the level of translation in eukaryotes is feasible because of the longer lifetime of eukaryotic mRNAs in the cell. The elongation stage of mRNA translation requires a substantial amount of energy and also eukaryotic elongation factors (eEFs). The important component of eEFs, i.e. eEF2 promotes the GTP-dependent translocation of the nascent protein chain from the A-site to the P-site of the ribosome. Mostly the eEF2 is regulated by phosphorylation and dephosphorylation by a specific kinase known as eEF2 kinase, which itself is up-regulated by various mechanisms in the eukaryotic cell. The activity of this kinase is dependent on calcium ions and calmodulin. Recently it has been shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and mTOR signalling pathway. There are also various stimuli that control the peptide chain elongation in eukaryotic cell; some stimuli inhibit and some activate eEF2. These reports provide the mechanisms by which cells likely serve to slow down protein synthesis and conserve energy under nutrient deprived conditions via regulation of eEF2. The regulation via eEF2 has also been seen in mammary tissue of lactating cows, suggesting that eEF2 may be a limiting factor in milk protein synthesis. Regulation at this level provides the molecular understanding about the control of protein translocation reactions in eukaryotes, which is critical for numerous biological phenomenons. Further the elongation factors could be potential targets for regulation of protein synthesis like milk protein synthesis and hence probably its foreseeable application to synthetic biology.  相似文献   

17.
Cold environments represent a substantial volume of the biosphere. To study developmental physiology in subzero seawater temperatures typically found in the Southern Ocean, rates and costs of protein synthesis were measured in embryos and larvae of Sterechinus neumayeri, the Antarctic sea urchin. Our analysis of the "cost of living" in extreme cold for this species shows (1) that cost of protein synthesis is strikingly low during development, at 0.41 +/- 0.05 J (mg protein synthesized)(-1) (n = 16); (2) that synthesis cost is fixed and independent of synthesis rate; and (3) that a low synthesis cost permits high rates of protein turnover at -1 degrees C, at rates comparable to those of temperate species of sea urchin embryos developing at 15 degrees C. With a low synthesis cost, even at the highest synthesis rates measured (gastrulae), the proportion of total metabolism accounted for by protein synthesis in the Antarctic sea urchin was 54%-a value similar to that of temperate sea urchin embryos. In the Antarctic sea urchin, up to 87% of metabolic rate can be accounted for by the combined energy costs of protein synthesis and the sodium pump. We conclude that, in Antarctic sea urchin embryos, high rates of protein synthesis can be supported in extreme-cold environments while still maintaining low rates of respiration.  相似文献   

18.
19.
We have investigated the regulation of protein synthesis in animal cells by serum factors. Withdrawal of serum from the medium of actively dividing Vero cells resulted in an immediate decline in the rate of peptide chain elongation (Hassell and Engelhardt, 1973). Assay of elongation factor I (EFI) activity in the post-ribosomal supernatant as well as that associated with the ribosomes revealed that serum deprivation resulted also in reduction in the activity of this factor. The decline in the activity of EFI after serum deprivation occurred to the same extent and at the same time as the decline in the in vivo rate of protein synthesis and the in vitro peptide synthetic capacity of cell-free extracts. A temporal correlation therefore exists among the in vivo rate of protein synthesis, the peptide synthetic activity of cell-free extracts, and the activity of EFI. The activity of peptidyl transferase was not altered by serum deprivation. The loss of extract peptide synthetic activity resulting from serum deprivation was reversible since serum addition to previously serum-starved cultures resulted in full restoration of activity for polyphenylalanine (polyPhe) synthesis within 3 h. Moreover, RNA synthesis was not required for this turn-on of polyPhe synthesis. Vased on these data we conclude that a translational control mechanism is operative in Vero cells deprived of serum.  相似文献   

20.
Protein synthesis in dormant embryos of sugar maple ( Acer saccharum ) was investigated in seeds stratified at 4°C or incubated at 15°C. Seeds stratified at 4°C germinated after 27 days; seeds incubated at 15°C failed to germinate. Stratification increased the embryo's capacity for protein synthesis by day 11 as measured by in vivo incorporation of [35S]-methionine into purified protein. At 4°C protein synthesis in the embryonic axis rose in a linear fashion prior to germination, whereas in cotyledons it increased until day 20 and then declined. Analysis of radiolabelled proteins by two-dimensional gel electrophoresis revealed that the levels of specific proteins were altered by temperature, primarily in the cotyledons. Several proteins were expressed in the cotyledons at 15°C but were absent in unstratified embryos and in embryos stratified at 4°C. That is, the expression of these proteins was repressed during stratification and release from dormancy. Levels of other proteins in the cotyledons declined at 4°C during stratification. We suggest that one or more of these proteins may be associated with the inhibition of growth of the embryonic axis imposed by the cotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号