首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
真核生物的基因组在细胞核中以染色质的形式存在,染色质的功能与它的三维结构紧密相关,例如,基因组的复制、转录、调控、DNA突变、长链非编码RNA的传播和胚胎发育等生物功能都是在细胞核的三维空间中完成的.随着染色体构象捕获及其衍生技术与高通量测序技术的结合,产生了大量的染色质交互作用数据.根据这些染色质交互作用数据,研究人员已经提出很多种方法来重建染色质的三维结构.这些方法有助于在不同分辨率下系统地研究染色质的三维结构,为更好地了解染色质的调控功能提供了结构依据.本文总结了近期染色质三维结构建模方法的进展,并探讨了其在研究染色质生物学功能方面的应用.  相似文献   

2.
染色质可及性(chromatin accessibility)作为一种衡量染色质结合因子与染色质DNA结合能力高低的染色质属性,是评价染色质结构稳态的重要指标之一,在多种细胞核进程中扮演重要角色,包括基因转录调控以及DNA损伤修复等。该属性的异常调控与多种疾病的发生发展密切相关,包括肿瘤以及神经退行性疾病等。对于该属性探究已经成为生命科学与疾病领域的热点。伴随越来越多的新技术应运而生,例如染色质构象捕获技术、高通量测序技术以及两种技术的结合等。随着技术的进步,多种参与调控染色质可及性的因素被发现和总结,包括核小体占位、组蛋白修饰以及非编码RNA等。多项大规模的染色质组学数据绘制了多种疾病的染色质可及性图谱,为揭示疾病的发生发展与染色质可及性之间的关系提供了数据支持。同时,随着单细胞染色质可及性测序技术的发展,实现了对细胞类型染色质层面的划分,弥补了单纯依赖基因表达划分细胞类型的不足。本文将从染色质的组成与可及性、影响染色质可及性的因素、染色质可及性的检测方法,以及染色质可及性与癌症的关系等方面简要阐述染色质可及性的研究进展。  相似文献   

3.
柯玉文  刘江 《遗传》2018,40(11):977-987
染色质开放性和染色质三维高级结构在基因表达和调控中发挥着非常重要的作用,广泛参与分化、发育、肿瘤发生等细胞生理过程,是表观遗传研究的热点领域之一。动物胚胎发育起始于终端分化的卵子受精形成全能性的受精卵。在精卵结合的过程中,染色质开放性和染色质三维高级结构发生了剧烈的变化,经历继承、重编程、重新建立的过程,并指导调控受精卵分化发育最终成为多细胞、多器官组织的新生命个体。本文介绍了近年来研究染色质开放性和染色质三维高级结构的实验分析技术手段,染色质结构在动物早期胚胎发育过程中的变化规律及其在早期胚胎发育中的作用,染色质结构与其他表观遗传信息(甲基化、组蛋白修饰等)关系方面的重要研究进展和存在的科学问题,以期为表观遗传调控早期胚胎发育的研究提供参考。  相似文献   

4.
染色质是真核生物细胞核内由核酸和蛋白质组成的复合结构,有着精密且复杂的三维结构。染色质除基本的DNA序列外,内部还存在着不同化学修饰,DNA-蛋白质相互作用,DNA-DNA相互作用和DNA-RNA相互作用,以上这些若发生改变都可能在肿瘤发生发展过程中起到至关重要的作用。通过不同的染色质测序方法,可以解析出这些改变,并进一步加深研究者对肿瘤形成机制的理解,最终应用于肿瘤的治疗。本文对常见的染色质测序技术部分原理和应用进行综述。  相似文献   

5.
DNA双链断裂(DNA double-strand breaks, DSBs)是威胁基因组完整性和细胞存活的最有害的DNA损伤类型。同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)是修复DNA双链断裂的两种主要途径。DSB修复涉及到损伤部位修复蛋白的募集和染色质结构的改变。在DNA双链断裂诱导下,染色质结构的动态变化在时间和空间上受到严格调控,进而对DNA双链断裂修复过程进行精细调节。特定的染色质修饰形成利于修复的染色质状态,有助于DNA双链断裂修复机器的招募、修复途径的选择和DNA损伤检查点的活化;其中修复途径的选择对于基因组稳定性至关重要。修复不当或失败可导致基因组不稳定性,甚至促进肿瘤的发生。本文综述了染色质结构和染色质修饰的动态变化在DSB修复中的重要作用。此外,文章还总结了在癌症治疗中靶向关键染色质调控因子在基因组稳定性维持、肿瘤发生发展以及潜在临床应用价值等方面的进展。  相似文献   

6.
染色质是真核细胞中遗传物质DNA的载体,染色质结构动态变化与DNA复制、转录、重组、修复等重要生物学事件密切相关.组蛋白是染色质结构的基本组成元件之一,组蛋白变体和组蛋白修饰是两类基本的染色质结构调控因子.在构成核小体的四种核心组蛋白(H2A、H2B、H3、H4)当中,H2A拥有最多的变体类型并在染色质结构调控中发挥重要作用.H2A组蛋白伴侣对H2A组蛋白及其变体的特异识别对于后者的折叠、修饰、传递、转运、组装、移除等生物学功能至关重要.本文着重探讨了组蛋白伴侣特异识别H2A组蛋白的分子机理,二者调控染色质结构的作用机制以及相应的生物学意义.  相似文献   

7.
答亮  赵慕钧 《生命的化学》2002,22(4):329-331
染色质环状结构是真核生物染色质高级结构形式。它与DNA复制过程中的复制子密切相关。在转录调控中,大范围的染色质结构形式控制等转录因子和目标位点的结合^[1],在发育和癌症过程中这种染色质环结构都发生变化,并由此而引起遗传指令的改变。  相似文献   

8.
染色质重塑与肌肉分化   总被引:1,自引:0,他引:1  
在真核生物中,基因组DNA是以染色质的状态存在和发挥作用的。目前的研究已经鉴定了多种可以调节染色质结构和功能的蛋白质和酶复合物,包括不依赖ATP的染色质修饰酶、依赖于ATP的染色质重塑复合物,以及募集DNA甲基化/去甲基化装置的核小体相关蛋白质复合物等。在骨骼肌分化过程中,MyoD家族和MEF2家族的转录因子起着重要作用。染色质修饰酶通过MyoD和MEF2介导的染色质重塑影响肌肉分化。  相似文献   

9.
染色质重塑是指染色质通过其结构的动态变化影响基因组DNA的可接近性,进而影响DNA复制、转录、修复和重组的过程,属于表观遗传调控。染色质域解旋酶DNA结合蛋白7(CHD7)是一种ATP依赖的染色质重塑酶,能够调控发育过程中多种重要转录因子,广泛参与众多生理过程。本文对CHD7在发育和疾病当中的表观遗传调控作用进行简要概述。  相似文献   

10.
真核生物的基因组以染色质的形式存在,染色质在真核生物的基因表达调控及胚胎发育过程中起重要作用,为表观遗传提供一个重要的信息整合平台.染色质的高级结构,特别是 30 nm染色质的动态变化在基因转录沉默和激活过程中起着重要的调控功能.但是目前对30 nm 染色质纤维的组装及其精细结构的认识还十分有限.本文通过体外表达系统,表达未经修饰的组蛋白,并利用克隆构建的601DNA均一重复序列,通过逐步降低盐离子浓度并加入组蛋白H1或镁离子的方法,体外重组均一的30 nm染色质纤维.并利用镀金属、负染色制样和冷冻电镜制样等手段通过透射式电子显微镜(TEM)对30 nm纤维结构的形成原因、组蛋白H1的作用和核小体重复单位(nucleosome repeat lengths,NRLs)长度对30 nm染色质纤维的影响进行研究.研究结果显示在组蛋白H1或二价镁离子存在的情况下,均可形成30 nm染色质纤维.其形成的染色质拓扑结构有所不同.统计分析表明,不同长度核小体重复单位(NRLs)形成的染色质纤维直径有所不同(P < 0.05).同时,我们得到了较为均一的冷冻电镜样品,为进一步研究30 nm染色质纤维的高级结构及理解体内染色质存在的形式及动态过程打下了较好的基础.  相似文献   

11.
在真核生物中,基因组DNA是被高度包装成染色质的形式而存在的,这就对基因在复制、转录、修复、重组时的功能分子有效地接近DNA形成了天然屏障,执行上述生化反应需要松散染色质的结构,染色质松散是染色质动态变化即染色质重塑(chromatin remodeling)的一种形式.越来越多的证据表明,染色质重塑在DNA损伤反应中起着非常重要的作用,染色质重塑过程可以把损伤应答和修复蛋白募集到损伤位点,从而完成修复.为了进一步探讨染色质重塑和DNA损伤修复的偶联机制,采用了基于Lac抑制子和Lac操纵子的大规模染色质重塑报告系统,并借助GFP分子荧光显示方法,建立了可以直观地观察染色质松散的技术.在利用该技术证实了DNA损伤应答蛋白TIP60能够强烈诱导染色质松散的基础上,发现P53诱导基因3蛋白(PIG3)在细胞辐射DNA损伤反应中也能够一定程度地诱导染色质松弛.这些结果证明此技术是可靠的,也为阐述DNA损伤修复与染色质重塑关联机制提供了新的信息.  相似文献   

12.
高晓萌  张治华 《遗传》2020,(1):45-56
生物大分子的相分离聚集(简称相分离)是驱动细胞内无膜细胞器形成的主要机制,参与众多生物学过程并和多种人类疾病密切相关,如神经退行性疾病等。近年来,研究人员围绕相分离现象的分子机制和生物学功能,发现了相分离与信号传导、染色质结构、基因表达、转录调控等一系列生物学过程存在紧密关联,为理解细胞命运决定和疾病发生提供了新的视角,为疾病治疗和新药研发开辟了新的可能途径。本文在回顾了相分离研究的发展过程、相分离现象在生物学中的应用,以及相分离与疾病的关系的基础上,重点分析了近年来相分离与染色质结构关联方面的研究突破,包括相分离如何感知并重塑染色质结构、超级增强子如何通过相分离调节基因表达、共转录激活因子如何通过相分离参与基因表达调控等,以期为进一步理解相分离与染色质空间结构的关系提供参考。  相似文献   

13.
染色质是真核DNA的存在方式,可以通过影响DNA的可及性调节基因转录,其基本单元为核小体,系由约147 bp的DNA缠绕在组蛋白八联体上形成的结构,核小体之间以连接DNA相连.核小体组蛋白上能发生甲基化和乙酰化等化学修饰.核小体位置、DNA的甲基化和组蛋白的修饰等对染色质状态(常染色质或异染色质)及基因组之间的长程相互作用有重要影响.近年,基于高通量测序技术,核小体位置和染色质修饰在多种细胞中的基因组分布已被测定.结果显示,这些标记的分布模式具有位点特异、动态变化、相互偶联和高度复杂的特征.本文详细回顾并评述了核小体位置和染色质修饰的分布模式、对应生物学功能、修饰之间的关联、实验测定技术、染色质状态的计算分析等内容.该工作对于深入认识和理解染色质的表观遗传调节机制有重要意义.  相似文献   

14.
在细胞分裂间期,每条染色质都占据着特定的染色质领域(chromosome territory,CT)。每个CT领域内进一步分成不同的拓扑学相关区域(topological associated domain,TAD),每个TAD又由若干子TAD(sub-TAD)构成。不同的TAD相互聚集,形成基因活跃表达和不表达的A、B两种组份或区室(compartment)。然而,目前对于染色质折叠方式及维持机制的研究尚无定论。核基质附着区(matrix attachment regions,MARs)是在不同物种基因组中广泛存在的一类富含AT序列的与核基质结合的DNA元件,能够通过与CTCF、SATB1等调控蛋白质相互作用,对远距离的基因表达进行调控。本研究以染色质三维结构为背景,通过整合染色质三维结构及组蛋白修饰等组学数据,对MARs元件与染色质三维结构的关系进行研究,对MARs元件参与形成的相互作用网络的结构及功能进行探索。结果发现,MARs元件与染色质三维结构高度相关,而且在高强度相互作用中占据较大的比例,提示MARs元件在染色质折叠方面发挥作用。此外,通过拓扑结构聚类分析还首次揭示,MARs元件分为不同类型,包括维持染色质领域及空间构象等的结构单元部分,以及调控基因表达等的功能单元部分。这表明,MARs元件在基因组三维高级结构的建立、维持以及功能等方面发挥重要作用。  相似文献   

15.
三维基因组学是一门研究基因组三维空间结构与功能的新兴学科,主要研究基因组序列在细胞核内的三维空间构象,及其对DNA复制、DNA重组、基因表达调控等生物过程的生物学效应。自染色质构象捕获技术 (3C)出现后,三维基因组学相关研究领域飞速发展。借助于3C及其衍生技术、Hi-C和ChIA-PET等技术,科学家能对各类物种的三维基因组进行更为深入的研究,从而揭示微生物、植物和动物基因组的空间构象、染色质的相互作用模式、转录调控以及不同生物学性状的形成机制;挖掘与生命活动和疾病相关的关键基因和信号通路;推动农业科学、生命科学和医学等领域的快速发展。文中就三维基因组学研究进展作一综述,主要阐述三维基因组学的概念和研究技术的发展及其在农业科学、生命科学和医学等领域的应用,尤其是肿瘤领域所取得的阶段性研究成果。  相似文献   

16.
核小体是构成真核生物染色质的基本结构单位,组蛋白变体H2A.Z及H3.3对染色质结构及基因转录过程发挥着重要的调控作用。体内研究核小体及染色质结构受到诸多因素限制,体外重构含有H2A.Z及H3.3的核小体结构是研究与组蛋白变体相关基因表达调控的重要方法之一。实验表达纯化了6种组蛋白,在复性的过程中装配了含有H2A.Z和H3.3的组蛋白八聚体。基于DNA序列10bp周期性及序列模体设计了3条易于形成核小体的DNA序列,通过PCR大量扩增的方法,回收了标记Cy3荧光分子的目的DNA序列。采用盐透析法体外组装了含有H2A.Z和H3.3的核小体结构,利用荧光标记、EB染色及考马斯亮蓝染色检测了含有组蛋白变体的核小体形成效率及形成过程的吉布斯自由能变化。结果发现,设计的3条DNA序列可以有效地组装形成含有组蛋白电梯的核小体结构,而且随着组蛋白八聚体与DNA比例的增加,核小体的形成效率显著提高;采用Cy3荧光标记可以灵敏且定量地计算组装过程的吉布斯自由能。该方法的建立对研究组蛋白变体相关的结构生物学及转录调控等具有一定的意义。  相似文献   

17.
真核细胞的染色质组装是组蛋白和DNA有序地形成核小体和染色质的过程.通过调节DNA的开放或折叠状态,染色质组装不但影响遗传信息的编码和存储,也决定了遗传信息的提取和解读.作为染色质组装的重要调控因子,组蛋白变体和组蛋白伴侣在与DNA相关的生命活动进程中发挥着至关重要的作用.本文综述了组蛋白变体H2A.Z以及CENP-A进行染色质组装的研究进展,并着重讨论了组蛋白变体和组蛋白伴侣在染色质组装中的重要作用.  相似文献   

18.
DNA修复的表观遗传学调控   总被引:1,自引:0,他引:1  
表观遗传学信息的改变是导致人类肿瘤形成的重要因素之一.基因组的稳定性经常会受到DNA损伤的威胁.然而,高度致密的染色质结构却极大地妨碍了DNA修复的进行.因此,真核生物细胞中必须有一个精确的机制来克服染色质这一天然的屏障.其中,组蛋白的共价修饰和ATP-依赖的染色质重塑通过改变染色质的结构,对DNA修复进程起着关键的调控作用.介绍了DNA修复过程中,发生在表观遗传学方面的主要调控过程,特别阐述了在DNA双链断裂损伤应答和修复过程中,组蛋白修饰和染色质重塑方面最新的研究进展,并对今后的发展方向进行了讨论.  相似文献   

19.
精确的基因表达调控是细胞分化、个体发育和细胞维持正常生命活动的必要条件,转录调控是真核细胞基因表达调控最关键的环节,其神秘和精深吸引着无数科学家为之奋斗不已。染色质构象捕获及其衍生技术的建立和2003年启动的"DNA元件百科全书"计划,将人们对基因转录调控的认识从二维层面推向三维空间。基因组中分布着众多调控元件,它们与所调控的靶基因间可相距几万甚至几十万个核苷酸,可以与靶基因位于相同或不同的染色体上。依据染色质环模型,调控元件可通过染色质环高级结构,与靶基因在空间上充分接近并相互作用,发挥其调控功能。同一个调控元件可以调控不同的靶基因,而相同的基因亦可能受不同调控元件的调节,由此细胞在染色质高级结构层面形成了一个复杂的调节基因转录活性的三维网络。该文分别从基因远程调控现象的发现、研究方法、相关机制及面临的挑战等方面作一简要综述。  相似文献   

20.
甲醛交联及染色质免疫沉淀作用研究体内DNA和蛋白质相互作用的一种新方法,在染色质结构研究中获得了广泛的应用。该方法利用甲醛固定活细胞中的DNA与蛋白质,通过免疫沉淀分离复合物,从而分析蛋白质及其体内的DNA结合序列。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号