首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
于珍  栾春杰  顾鸣敏 《遗传》2014,36(1):21-29
腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT)是人类最常见的遗传性运动和感觉神经疾病之一, 全球群体发病率约为1/2500。CMT主要分为脱髓鞘型(包括CMT1, CMT3, CMT4和CMTX1)和轴索型(CMT2)。迄今为止, 先后已有17个CMT2的致病基因被定位和克隆, 然而对这些基因的致病机制所知甚少。建立CMT2小鼠模型是从动物水平研究突变基因致病机制的有效手段。目前已成功构建了近10种CMT2的转基因小鼠、基因敲除小鼠或基因敲入小鼠模型, 其中尤以带有人源致病基因的转基因小鼠模型为多。文章简要介绍了CMT2小鼠模型构建策略, 着重阐述了CMT2小鼠模型的研究进展, 并对个别小鼠模型进行了剖析。  相似文献   

2.
腓骨肌萎缩症也称夏科-马利-杜斯氏病(Charcot-Marie-Tooth disease, CMT),是人类最常见的遗传性周围神经病之一,其遗传方式以常染色体显性遗传为主,也有部分呈常染色体隐性遗传或X连锁显性或隐性遗传。根据临床表型将CMT分为脱髓鞘型(CMT1)、轴突型(CMT2)和中间型(DI-CMT)。常染色体隐性遗传的CMT1(AR-CMT1,也称CMT4型)临床表现除了CMT常见的四肢远端进行性肌无力和萎缩,以及高足弓和爪形手外,常起病早,进展迅速,并有不同程度的感觉障碍和脊柱畸形(以脊柱侧凸为主)。近年来的研究显示,CMT4有11种亚型,其中有些亚型的致病机制较明确,有些亚型存在建立者突变,有些亚型还局限在临床描述和突变检出上。文章综述了CMT4的最新研究进展,包括各亚型的临床表现、致病机制和小鼠模型等。  相似文献   

3.
在中枢神经系统中,脱髓鞘病变后的机体可以实现一定程度的再髓鞘修复,但尚不足以诱导功能恢复。越来越多的研究表明,神经元电活动作为一种轴突信号,调控着发育性成髓鞘过程并且能够启动及促进轴突再髓鞘。通过激活神经元电活动促进轴突再髓鞘修复的策略已经成为治疗相关疾病的潜在突破口,但该再髓鞘过程中涉及到的少突胶质谱系及星形胶质细胞的变化及机制仍不够清楚。该文拟主要围绕神经元电活动调控轴突再髓鞘的相关机制进行综述,为今后研究提供参考。  相似文献   

4.
果蝇(Drosophila melanogaster)作为最早用于研究心脏发育基因调控的模式生物,已经走过三十年的历程。果蝇心脏发育过程经历了胚胎期、幼虫期和成虫期三大阶段。在胚胎早期, Tinman、Dorsocross和Pannier等基因是关键的调控因子。Tinman参与最早的心脏前体细胞分化和心脏细胞形成,而Dorsocross和Pannier则影响心脏前体细胞的定向分化和心脏管腔的形成。进入胚胎晚期和幼虫期,果蝇的心管经历进一步的发展和重塑,该过程主要受到转录因子Hand、Mef2以及Hox基因家族的调控。在成虫期, Hox基因家族和Tinman依旧发挥重要作用。虽然果蝇心脏与脊椎动物成熟心脏存在形态上的差异,但两者心脏的早期发育过程以及调控基因和信号通路都有保守性。本文综述了果蝇心脏发育基因调控研究的三十年进展以及利用果蝇模型研究人类心脏相关疾病的潜在希望。  相似文献   

5.
Periaxin是施旺氏细胞(Schwann cells)与晶状体纤维细胞中特异表达的支架蛋白之一.在施旺氏细胞包裹轴突形成髓鞘过程中,periaxin蛋白参与髓鞘的延展、修复及再生等.PRX基因的缺失或突变将引起脱髓鞘型腓骨肌萎缩症(CMT)4F亚型的发生.本文就periaxin蛋白分子结构特点、生理学功能、以及其基因突变与脱髓鞘型腓骨肌萎缩症CMT4F亚型的发生等进行综述.  相似文献   

6.
以果蝇模型研究人类神经退行性疾病   总被引:3,自引:0,他引:3  
人类神经退行性疾病是一类以神经元退行性病变导致个体行为异常乃至死亡为主要特征的疾病.果蝇以其独特的分子遗传学优势成为研究人类神经退行性疾病的理想模型.通过对果蝇模型的研究不仅可以揭示神经退行性疾病发生的细胞分子通路,还可以研究对疾病有调控作用的基因及其表达产物,寻找可能的药物作用靶点并进行药物筛选,为防治人类神经退行性疾病提供新的方法和有效的药物.  相似文献   

7.
利用果蝇模型研究人类心脏早期发育的分子机理(英文)   总被引:2,自引:0,他引:2  
近年来 ,果蝇心脏特化的遗传机制已初步研究清楚 ,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性 ,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模式。为此目的 ,我们采用P转座子和EMS诱变技术建立了约 3 0 0 0个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选 ,我们检出 2 0 0余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究 ,证明这些基因表现RNAi的突变表型 ,该类突变表型与基因突变时表现的表型相似 ,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果 ,我们从果蝇心脏侯选基因中初步克隆和鉴定了 5 0个人类同源基因 ,其中 2 0个是新基因。Northen印迹分析表明 ,一部分人类基因在心脏组织中有表达 ,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前 ,我们正在建立转基因果蝇 ,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症 ,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

8.
神经元轴突外包裹的髓鞘结构对于提高神经元传导速率,维持神经系统稳定性有重要作用。在中枢神经系统中,髓鞘主要由少突胶质细胞形成。成髓鞘过程在内源性和外源性因素的共同调节下进行,神经元轴突信号在这个过程中扮演重要角色。髓鞘发育过程依赖于轴突的促进信号和抑制信号的相互平衡:促进信号包括层粘连蛋白和神经调节素等,神经元电信号能启动并促进髓鞘再生;抑制信号包括细胞黏附分子以及Notch信号。本文综述了一些因子尤其是神经元信号在髓鞘发育中的作用,也讨论了脱髓鞘疾病中神经元如何参与髓鞘再生。这些总结有助于理解髓鞘发育的机制,也有助于脱髓鞘疾病的研究和治疗。  相似文献   

9.
人脑约一半组织为白质,白质主要是由形成髓鞘的胶质细胞和髓鞘所包裹的轴突形成。高等脊椎动物的思考和行为离不开神经元的电信号传导,而神经元的电信号传导又离不开包裹其轴突的髓鞘。髓鞘帮助神经元完成快速的信号传导,给予其物理保护、能量支持以及环境稳态调节。当中枢神经系统中发生脱髓鞘时,少突胶质细胞前体细胞被激活,并发生迁移、增殖、髓鞘化,并最终在受损处包裹轴突,形成新的髓鞘;或外周神经系统中施万细胞转变为受损的施万细胞,辅助受损残片的清理以及轴突再生,最终形成新髓鞘,这个过程就是髓鞘再生。髓鞘相关疾病如多发性硬化症是年轻人中最普遍的神经疾病之一,其对许多国家的大众和社会经济活动均造成不可小觑的损害,还有一些研究通过促进髓鞘再生干预大脑衰老。因此,髓鞘再生相关研究具有临床治疗、经济发展以及社会稳定的丰富意义。该综述将围绕髓鞘再生主题,对正常髓鞘再生的过程与机制,参与的细胞,髓鞘再生失败的原因及其所引起的相关疾病,目前对相关疾病的改善、治疗方法,以及所使用的动物模型进行阐述,并对髓鞘再生相关研究的学术价值、领域遗留问题进行讨论,以方便感兴趣人士了解髓鞘再生相关主题。  相似文献   

10.
近年来,果蝇心脏转化的遗传机制已初步研究清楚,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模型。为此目的,我们采用P转座子和EMS诱变技术建立了约3000个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选,我们选出200余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究,证明这些基因表现RNAi的突变表型,该类突变表型与基因突变时表现的表型相似,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果,我们从果蝇心脏侯选基因中初步克隆和鉴定了50个人类同源基因,其中20个是新基因。Northen印迹分析表明,一部分人类基因在心脏组织中有表达,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前,我们正在建立转基因果蝇,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

11.
黑腹果蝇作为遗传学研究中重要的模式生物,其科研价值一直备受瞩目。目前中学生物学实验教学中少有利用果蝇作为实验材料的案例,其主要原因是:果蝇培养、果蝇相关实验的具体操作在中学教材中未提供成熟的、适宜在中学实验室中操作的方法。针对上述问题,探索出了在中学实验室中进行果蝇饲养的条件,以及适合中学生的果蝇成虫麻醉方法,使果蝇成为"观察昆虫的生殖和发育"实验中较为理想的昆虫材料之一。  相似文献   

12.
果蝇在肿瘤学研究中的优势及应用前景   总被引:1,自引:0,他引:1  
霍桂桃  吕建军  屈哲  林志  张頔  杨艳伟  李波 《遗传》2014,36(1):30-40
果蝇作为研究人类疾病的模式生物, 与哺乳动物不仅在基本的生物学、生理学和神经系统机能等方面比较相似, 而且果蝇有其作为模式生物的独特优势。近年来的研究表明, 果蝇和人类在肿瘤发生信号通路等方面的保守性很高, 而且果蝇具有很强的遗传学可操作性, 是肿瘤学研究有效的模型之一, 可用于研究人类肿瘤发生、发展、转移等分子机制。文章综述了果蝇在肿瘤学研究中的优势、已建立的用于研究特定癌症的果蝇模型, 并对其在未来肿瘤学的研究方向进行展望, 以期为国内肿瘤学研究和抗肿瘤药物的研发提供参考。  相似文献   

13.
多发性硬化(multiple sclerosis,MS)是一种中枢神经系统慢性炎症性脱髓鞘疾病,为临床神经系统的疑难重病,基本病理特征包括炎症浸润,原发性脱髓鞘和胶质细胞活化等。其病理过程、发病机制的研究以及治疗药物的筛选和评价都需要合适的动物模型。本文从其发病机制、致病特点与适应范围等方面对MS模型研究进展进行介绍。  相似文献   

14.
正对于许多神经退行性疾病来说,比如帕金森病、肌萎缩侧索硬化和外周神经病变,轴突的损失是一个早期的缺陷。当轴突出现损失,神经细胞就无法正常交流,神经系统功能受到损伤。特别是对外周神经病变来说,受损的轴突会触发自毁程序。在一项新研究中,华盛顿大学医学院的科学家们在自毁的轴突中发现一个特殊分子,深入了解损伤如何发生有助于帮助找到阻止其发生的方  相似文献   

15.
铁代谢紊乱一直被视为是许多神经退行性疾病共同的病理特征,如阿尔茨海默氏症(Alzheimer’s disease,AD)、帕金森氏病(Parkinson’s disease,PD)以及弗里德赖希共济失调(Friedreich’s ataxia,FRDA)等均与脑铁代谢紊乱密切相关。随着分子生物学的进展,迄今为止也已经发现许多参与铁运输、储存和调控的基因与神经退行性病变的发生和发展有关,然而铁代谢紊乱在疾病发病过程中的致病机制仍不十分清楚。近年来许多研究者利用各种转基因动物模型来研究铁代谢相关神经退行性疾病的发病机制,但是啮齿类动物模型由于模型构建系统周期较长且比较复杂,从而限制了铁相关蛋白在神经退行性疾病中作用机制的研究进展。果蝇具有生活周期短暂、染色体数目少以及表型易于观察等优点,同时果蝇与人在很多基因和通路上都高度保守,且神经系统也可表现出与人相似的复杂的功能,因此被广泛地应用在铁代谢相关神经退行性疾病发病机制的研究中。果蝇还以其独特的分子遗传学优势,更容易构建缺失、插入、敲除或转基因模型,可在不同神经退行性病理情况下进行遗传学筛选铁相关的调控基因,从而为解决铁代谢紊乱在疾病发病过程中的致病机制提供更多的线索。因此在果蝇模型中发现可以中止甚至是逆转神经元退化进程的铁相关基因,以期为神经退行性疾病的研究和治疗提供策略。  相似文献   

16.
利用闭环飞行模拟系统研究果蝇视觉飞行定向行为的操作式条件化 ,证明正常果蝇视觉学习记忆能力与日龄有关 ,即 3~ 4d龄果蝇的学习记忆能力明显优于1~ 2d龄果蝇 ,蝇脑内的cAMP含量也呈现随果蝇日龄增加而增加的趋势 .同时对学习记忆缺陷型果蝇进行检测 ,其脑内cAMP含量高于正常对照组果蝇 .通过喂食PDEase抑制剂咖啡因扰乱cAMP代谢 ,使果蝇cAMP水平异常提高 ,导致果蝇学习记忆能力显著下降 ,表明果蝇视觉学习记忆需要脑内cAMP水平处于一适当范围 ,过高或过低的cAMP水平都将影响果蝇的视觉学习记忆能力  相似文献   

17.
黑腹果蝇(Drosophila melanogaster)是进行生物医学研究的理想模型,但研究过程往往受到遗传工具和品系资源的限制,无法有效地调控目的基因表达,阻碍实验的深入开展。为了方便果蝇领域的实验室开展研究,我们首先开发并优化了基于CRISPR/Cas9的基因组编辑技术,随后研发了转录激活系统和新一代转基因干扰技术,最终可以简单高效、准确特异地调控目的基因表达。同时,利用这些遗传学新技术,我们构建了相应的基因敲除、转基因转录激活、转基因干扰的果蝇品系资源库,使清华大学果蝇中心成为世界上最重要的果蝇技术和资源中心之一。这些新技术以及相应的果蝇资源,正在被国内外果蝇研究领域的实验室所应用,对发育和疾病等相关研究发挥着广泛的促进作用。  相似文献   

18.
蛋白质组学旨在阐明基因组所表达的真正执行生命活动的全部蛋白质的表达规律和生物功能。随着人类基因组学计划的逐渐成熟,分子水平的实验技术不断发展,蛋白质组学的研究被提高到了前所未有的高度。果蝇是生命科学领域最为常用的一种模式生物,长期的系统研究也使果蝇的基因组成为至今注释最好的基因组之一,为功能基因组研究奠定了基础。但由于技术的限制,迄今有关果蝇蛋白质组学研究的报道尚不多见。近年来果蝇蛋白质组学的研究主要包括表达谱、修饰谱、比较蛋白质组学和疾病模型蛋白质组等四个方向,为进一步开展人类疾病临床蛋白质组学研究奠定了基础。  相似文献   

19.
崔琪琪  谭韬 《生命科学》2024,(2):151-158
滋养层细胞是胎盘的主要组成成分,滋养层发育不良会导致胎盘缺陷,进而引发相关妊娠疾病。为阐明疾病致病机制及治疗相关疾病,有必要了解滋养层发育机制。鉴于伦理限制,人类滋养层研究并没有像小鼠那样成熟,合适的体外模型是目前研究的重点和难点。干细胞、类器官、材料科学及测序技术的快速发展极大地促进了体外滋养层发育模型的建立与研究。近年来,国内外研究团队陆续报道了一系列二维(2D)和三维(3D)滋养层发育模型,用于模拟体内胎盘发育和功能。本文主要围绕滋养层的发育、体外滋养层发育模型的建立及其应用等进行综述,为相关研究提供参考。  相似文献   

20.
<正>遗传性智力障碍是一种全球发病率约2%的神经发育异常疾病。已报道NSun2基因的若干突变会导致人群中的Dubowitz样综合征,其主要征状包括智力障碍、小头畸形、语言迟缓、行为缺陷、生长发育迟滞等。部分上述征状在NSun2敲除小鼠模型中也有表现。同样,在缺失NSun2的果蝇中研究人员发现果蝇的短时记忆受损。已知NSun2是一种保守的RNA甲基转移  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号