首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A hitchhiker's guide to the MADS world of plants   总被引:4,自引:0,他引:4  
  相似文献   

5.
Pseudomonas aeruginosa is one of the most virulent and resistant non-fermenting Gram-negative pathogens in the clinic. Unfortunately, P. aeruginosa has acquired genes encoding metallo-β-lactamases (MβLs), enzymes able to hydrolyze most β-lactam antibiotics. SPM-1 is an MβL produced only by P. aeruginosa, while other MβLs are found in different bacteria. Despite similar active sites, the resistance profile of MβLs towards β-lactams changes from one enzyme to the other. SPM-1 is unique among pathogen-associated MβLs in that it contains “atypical” second sphere residues (S84, G121). Codon randomization on these positions and further selection of resistance-conferring mutants was performed. MICs, periplasmic enzymatic activity, Zn(II) requirements, and protein stability was assessed. Our results indicated that identity of second sphere residues modulates the substrate preferences and the resistance profile of SPM-1 expressed in P. aeruginosa. The second sphere residues found in wild type SPM-1 give rise to a substrate selectivity that is observed only in the periplasmic environment. These residues also allow SPM-1 to confer resistance in P. aeruginosa under Zn(II)-limiting conditions, such as those expected under infection. By optimizing the catalytic efficiency towards β-lactam antibiotics, the enzyme stability and the Zn(II) binding features, molecular evolution meets the specific needs of a pathogenic bacterial host by means of substitutions outside the active site.  相似文献   

6.
拟南芥和琴叶拟南芥中MADS-box基因的比较进化分析   总被引:1,自引:0,他引:1  
MADS-box基因编码一类转录因子。在被子植物中,MADS-box基因对于营养生长和生殖发育都有重要的调控作用,是植物体(特别是花序、花和果实)的正常发育所不可或缺的。为了理解近缘物种在遗传基础上的异同,我们对拟南芥(Arabidopsis thaliana)和琴叶拟南芥(A.lyrata)基因组中MADS-box基因的拷贝数目和进化式样进行了比较分析。通过搜索公共数据库,我们在拟南芥和琴叶拟南芥中分别鉴定出了106和115个基因。系统发育分析的结果表明,这些基因属于I型和II型MADS-box基因。在两个物种分化之后,II型基因的拷贝数目变化不大,I型基因则经历了多次独立的基因丢失和获得事件。通过比较这些基因在染色体上的排列,我们不但鉴定出了存在微共线性的基因组区段,而且发现新基因产生的主要机制是串联重复和散在重复。分子进化的研究进一步表明,I型和II型基因在进化式样上存在着显著差异:II型基因在进化中一般都受到了较强的选择压力,而I型基因大多受到的选择压力较弱。本研究将为深入理解近缘物种在基因和基因组层面上的异同、探讨物种分化和生物多样性形成的机制等问题提供新思路。  相似文献   

7.
Mitogen-activated protein kinase (MAP) cascades are important in antiviral immunity through their regulation of interferon (IFN) production as well as virus replication. Although the serine-threonine MAP kinase tumor progression locus 2 (Tpl2/MAP3K8) has been implicated as a key regulator of Type I (IFNα/β) and Type II (IFNγ) IFNs, remarkably little is known about how Tpl2 might contribute to host defense against viruses. Herein, we investigated the role of Tpl2 in antiviral immune responses against influenza virus. We demonstrate that Tpl2 is an integral component of multiple virus sensing pathways, differentially regulating the induction of IFNα/β and IFNλ in a cell-type specific manner. Although Tpl2 is important in the regulation of both IFNα/β and IFNλ, only IFNλ required Tpl2 for its induction during influenza virus infection both in vitro and in vivo. Further studies revealed an unanticipated function for Tpl2 in transducing Type I IFN signals and promoting expression of interferon-stimulated genes (ISGs). Importantly, Tpl2 signaling in nonhematopoietic cells is necessary to limit early virus replication. In addition to early innate alterations, impaired expansion of virus-specific CD8+ T cells accompanied delayed viral clearance in Tpl2-/- mice at late time points. Consistent with its critical role in facilitating both innate and adaptive antiviral responses, Tpl2 is required for restricting morbidity and mortality associated with influenza virus infection. Collectively, these findings establish an essential role for Tpl2 in antiviral host defense mechanisms.  相似文献   

8.
9.
We have examined the occurrence/disappearance, tissue location, and posttranslational modification of β-amylase proteins in rye (Secale cereale L.) kernels at three physiological stages (development, maturity, germination) with a normal inbred line and a mutant line exhibiting a high but incomplete β-amylase deficiency. This deficiency corresponds to a lack of accumulation of β-amylase activity in the endosperm and does not affect the level of activity in the outer pericarp and green tissues as compared to the normal line. Two antigenically related but distinct β-amylases (I and II) were detected in the normal line (II being the major constituent) and only one (I) in the mutant line. I and II display very similar electrophoretic polymorphism. In both lines, I appears to be ubiquitous, although it disappears from the outer pericarp during ripening. Antigen II was present only in the normal line and appears to be specific for the endosperm and perhaps for the maternal green tissues of the seed. Posttranslational modifications occurring during germination, which are mimicked by the action of papain, affect II but not I. The two groups of β-amylases are discussed in relation to recent reports indicating the presence of two types of β-amylase with different functions and gene loci in barley and wheat.  相似文献   

10.
11.
12.
Various tissues from both germinating and developing castor seeds (Ricinus communis L.) have been analyzed for the level of expression of the genes for the α- and β-subunits of pyrophosphate-dependent phosphofructokinase (PFP). In tissues in which PFP is expressed, there is a single mRNA species of approximately 2 kilobases for each of the subunits. In germinating endosperm, the gene for the α-subunit is expressed at an earlier time after imbibition than that for the β-subunit, whereas in developing castor seed endosperm, both genes are highly and coordinately expressed. During seedling development, there is tissue-specific expression of the two genes. Tissues in which there is a high level of mRNA correspond with tissues in which both subunits of PFP can be detected. The differential expression of the two subunit genes in germinating endosperm does not result in the presence of the α-subunit polypeptide in the absence of the β-subunit polypeptide. Southern analysis of castor genomic DNA indicates the presence of a single gene for both the α- and β-subunits of PFP in contrast with potato, in which there are at least two genes for each subunit.  相似文献   

13.
Evolution of Reproductive Organs in Land Plants   总被引:4,自引:0,他引:4  
LEAFY gene is the positive regulator of the MADS-box genes in flower primordia. The number of MADS-box genes presumably increased by gene duplications before the divergence of ferns and seed plants. Most MADS-box genes in ferns are expressed similarly in both vegetative and reproductive organs, while in gymnosperms, some MADS-box genes are specifically expressed in reproductive organs. This suggests that (1) the increase in the number of MADS-box genes and (2) the subsequent recruitment of some MADS-box genes as homeotic selector genes were important for the evolution of complex reproductive organs. The phylogenetic tree including both angiosperm and gymnosperm MADS-box genes indicates the loss of the A-function genes in the gymnosperm lineage, which is presumably related to the absence of perianths in extant gymnosperms. Comparison of expression patterns of orthologous MADS-box genes in angiosperms, Gnetales, and conifers supports the sister relationship of Gnetales and conifers over that of Gnetales and angiosperms predicted by phylogenetic trees based on amino acid and nucleotide sequences. Received 30 July 1999/ Accepted in revised form 9 September 1999  相似文献   

14.
Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.  相似文献   

15.
16.
17.
Integrin-mediated phagocytosis, an important physiological activity undertaken by professional phagocytes, requires bidirectional signalling to/from αMβ2 integrin and involves Rap1 and Rho GTPases. The action of Rap1 and the cytoskeletal protein talin in activating αMβ2 integrins, in a RIAM-independent manner, has been previously shown to be critical during phagocytosis in mammalian phagocytes. However, the events downstream of Rap1 are not clearly understood. Our data demonstrate that one potential Rap1 effector, Regulator of G-Protein Signalling-14 (RGS14), is involved in activating αMβ2. Exogenous expression of RGS14 in COS-7 cells expressing αMβ2 results in increased binding of C3bi-opsonised sheep red blood cells. Consistent with this, knock-down of RGS14 in J774.A1 macrophages results in decreased association with C3bi-opsonised sheep red blood cells. Regulation of αMβ2 function occurs through the R333 residue of the RGS14 Ras/Rap binding domain (RBD) and the F754 residue of β2, residues previously shown to be involved in binding of H-Ras and talin1 head binding prior to αMβ2 activation, respectively. Surprisingly, overexpression of talin2 or RAPL had no effect on αMβ2 regulation. Our results establish for the first time a role for RGS14 in the mechanism of Rap1/talin1 activation of αMβ2 during phagocytosis.  相似文献   

18.
19.
The TH2 cytokines, IL-4 and IL-13, play critical roles in inducing allergic lung inflammation and drive the alternative activation of macrophages (AAM). Although both cytokines share receptor subunits, IL-4 and IL-13 have differential roles in asthma pathogenesis: IL-4 regulates TH2 cell differentiation, while IL-13 regulates airway hyperreactivity and mucus production. Aside from controlling TH2 differentiation, the unique contribution of IL-4 signaling via the Type I receptor in airway inflammation remains unclear. Therefore, we analyzed responses in mice deficient in gamma c (γc) to elucidate the role of the Type I IL-4 receptor. OVA primed CD4+ OT-II T cells were adoptively transferred into RAG2−/− and γc −/− mice and allergic lung disease was induced. Both γc −/− and γcxRAG2−/− mice developed increased pulmonary inflammation and eosinophilia upon OVA challenge, compared to RAG2−/− mice. Characteristic AAM proteins FIZZ1 and YM1 were expressed in lung epithelial cells in both mouse strains, but greater numbers of FIZZ1+ or YM1+ airways were present in γc −/− mice. Absence of γc in macrophages, however, resulted in reduced YM1 expression. We observed higher TH2 cytokine levels in the BAL and an altered DC phenotype in the γc −/− recipient mice suggesting the potential for dysregulated T cell and dendritic cell (DC) activation in the γc-deficient environment. These results demonstrate that in absence of the Type I IL-4R, the Type II R can mediate allergic responses in the presence of TH2 effectors. However, the Type I R regulates AAM protein expression in macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号