首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
正Long noncoding RNAs(lncRNAs)have been increasingly implicated in a variety of human diseases,including autoimmune disease(Wu et al.,2015),neurodegenerative diseases(Wapinski and Chang,2011)and cancer(Huarte,2015).Due to recent advances in next-generation sequencing technologies,tens of thousands of lnc RNAs have been identified and annotated,a number of them  相似文献   

3.
正RNA methylation,conceptually similar to methylation of DNA and protein,has been identified in m RNAs and noncoding RNAs(nc RNAs)(Niu et al.,2013).In particular,N6-methyl-adenosine(m~6A)is the most prevalent m RNA modification in eukaryotes(Jia et al.,2013).New insights into the biological functions of m~6A modification have been recently gained due to the rapid development of highthroughput sequencing technologies.m RNAs are methylated  相似文献   

4.
With the rising interest in the regulatory functions of long non-coding RNAs (lncRNAs) in complex human diseases such as cardiovascular diseases, there is an increasing need in public databases offering comprehensive and integrative data for all aspects of these versatile molecules. Recently, a variety of public data repositories that specialized in lncRNAs have been developed, which make use of huge high-throughput data particularly from next-generation sequencing (NGS) approaches. Here, we provide an overview of current lncRNA databases covering basic and functional annotation, lncRNA expression and regulation, interactions with other biomole-cules, and genomic variants influencing the structure and function of lncRNAs. The prominent lncRNA antisense noncoding RNA in the INK4 locus (ANRIL), which has been unequivocally associated with coronary artery disease through genome-wide association studies (GWAS), serves as an example to demonstrate the features of each individual database.  相似文献   

5.
6.
<正>Dear Editor,The process of anther development is generally conserved across plant species(Ma, 2005). Many protein-coding genes and noncoding RNAs have been identified to participate in early anther development in Arabidopsis(Walbot and Egger, 2016).mi R319 is one of the most ancient and conserved mi RNA families in land plants(Chávez Montes et al., 2014).  相似文献   

7.
8.
9.
10.
As one large class of non-coding RNAs(nc RNAs), long nc RNAs(lncRNAs) have gained considerable attention in recent years. Mutations and dysfunction of lnc RNAs have been implicated in human disorders. Many lnc RNAs exert their effects through interactions with the corresponding RNA-binding proteins. Several computational approaches have been developed, but only few are able to perform the prediction of these interactions from a network-based point of view. Here,we introduce a computational method named lnc RNA–protein bipartite network inference(LPBNI). LPBNI aims to identify potential lnc RNA–interacting proteins, by making full use of the known lnc RNA–protein interactions. Leave-one-out cross validation(LOOCV) test shows that LPBNI significantly outperforms other network-based methods, including random walk(RWR)and protein-based collaborative filtering(Pro CF). Furthermore, a case study was performed to demonstrate the performance of LPBNI using real data in predicting potential lnc RNA–interacting proteins.  相似文献   

11.
Box C/D RNAs guide the site-specific formation of 2′-O-methylated nucleotides(Nm) of RNAs in eukaryotes and archaea. Although C/D RNAs have been profiled in several archaea, their targets have not been experimentally determined. Here, we mapped Nm in r RNAs, t RNAs, and abundant small RNAs(s RNAs) and profiled C/D RNAs in the crenarchaeon Sulfolobus islandicus. The targets of C/D RNAs were assigned by analysis of base-pairing interactions, in vitro modification assays, and gene deletion experime...  相似文献   

12.
The p53 tumor suppressor gene is the most frequently mutated gene in cancer. Significant progress has been made to discern the im- portance of p53 in coordinating cellular responses to DNA damage, oncogene activation, and other stresses. Noncoding RNAs are RNA molecules functioning without being translated into proteins. In this work, we discuss the dichotomy of p53 regulation by noncoding RNAs with four unconventional questions. First, is overexpression of microRNAs responsible for p53 inactivation in the absence of p53 mutation? Second, are there somatic mutations in the noncoding regions of the p53 gene? Third, is there a germline mutant in the non- coding regions of the p53 gene that predisposes carriers to cancer? Fourth, can p53 activation mediated by a noncoding RNA mutation cause cancer? This work highUghts the prominence of noncoding RNAs in p53 dysregutation and tumorigenesis.  相似文献   

13.
14.
15.
Long non-coding RNAs (lncRNAs) have gained massive attention in recent years as a potentially new and crucial layer of gene regulation. LncRNAs are prevalently transcribed in the genome, but their roles in gene regulation and disease development are largely unknown. HOX antisense intergenic RNA (HOTAIR), a lncRNA located in the HOXC locus, has been shown to repress HOXD gene expression and promote breast cancer metastasis. Mechanistically, HOTAIR interacts with and recruits polycomb repressive complex 2 (PRC2) and regulates chromosome occupancy by EZH2 (a subunit of PRC2), which leads to histone H3 lysine 27 trimethylation of the HOXD locus. Moreover, HOTAIR is pervasively overexpressed in most human cancers compared with noncancerous adjacent tissues. This review summarizes the studies on the HOTAIR lncRNA over the past 6 years.  相似文献   

16.
17.
18.
19.
正Epigenetics plays a large role in various aspects of plant biology,including development,response to biotic and abiotic stresses,silencing of transposable elements,and maintenance of genome stability.In plants,epigenetic regulation involves histone and DNA modifications and noncoding RNAs including small RNAs(s RNAs)and long noncoding RNAs(lnc RNAs).This issue of Science China Life Sciences includes five review articles and eight research  相似文献   

20.
An enormous amount of long non-coding RNAs (lncRNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability, regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号