首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium-based alloys are frequently reported as potential biodegradable orthopedic implant materials. Controlling the degradation rate and mechanical integrity of magnesium alloys in the physiological environment is the key to their applications. In this study, calcium phosphate (Ca-P) coating was prepared on AZ60 magnesium alloy using phosphating technology. AZ60 samples were immersed in a phosphating solution at 37 ± 2 °C for 30 min, and the solution pH was adjusted to 2.6 to 2.8 by adding NaOH solution. Then, the samples were dried in an attemperator at 60 °C. The degradation behavior was studied in vivo using Ca-P coated and uncoated magnesium alloys. Samples of these two different materials were implanted into rabbit femora, and the corrosion resistances were evaluated after 1, 2, and 3 months. The Ca-P coated samples corroded slower than the uncoated samples with prolonged time. Significant differences (p < 0.05) in mass losses and corrosion rates between uncoated samples and Ca-P coated samples were observed by micro-computed tomography. The results indicate that the Ca-P coating could slow down the degradation of magnesium alloy in vivo.  相似文献   

2.
A series of 90/10 cupronickel alloys containing iron at levels between 0% and 5% were immersed in the sea in Chichester Harbour. Samples were retrieved over a 14‐month period and subjected to scanning electron microscopy, energy dispersive X‐ray analysis and X‐ray photoelectron spectroscopy. The alloy with no iron corroded very rapidly and showed little, if any, colonisation. The 0·5% Fe and 1·5% Fe alloys developed microfouling communities dominated by the diatom Amphora, while the 2·5% and 5% Fe‐containing materials showed not only diatoms but also macro‐fouling in the form of barnacle settlement. However, the very loosely adherent nature of the iron and nickel‐rich corrosion products of these high iron alloys resulted in very poor tenacity of adhesion by the macrofouling. However, thick films of diatoms of lower copper tolerance became well established on the iron‐rich alloys. The alternative anti‐fouling mechanisms of the 90/10 copper‐nickels are discussed.  相似文献   

3.
《IRBM》2022,43(5):456-469
ObjectivesMagnesium alloys are the potential candidate for metallic implants due to their excellent mechanical characteristics, biodegradable nature, and properties similar to human bone. However, a high degradation rate is primary obstacle in implementing these alloys as biodegradable orthopedic implants. Powder-mixed electric discharge machining (PMEDM) is an emerging method of surface modification of metallic alloys that can be implemented to improve the corrosion resistance of Mg alloys. Therefore, PMEDM using zirconium (Zr) and manganese (Mn) powder particles has been proposed to modify the surface characteristics of Mg-4Zn alloy.Materials and MethodsIn the present work, Zr and Mn powders have been used in varying concentrations during PMEDM of Mg-4Zn alloy. Experiments were conducted as per mixed design L18 orthogonal array (OA). Taguchi and Grey Relational Analysis (GRA) have been used to optimize the process parameters. Analysis of response characteristics, namely material removal rate (MRR), surface roughness (SR), and thickness of the alloyed layer (TAL), has been carried out at different values of input variables (like powder additives (Pa), powder concentration (Cp), peak current (Ip), pulse on time (Ton) and duty cycle (DC)). The corrosion analysis was carried out by immersing the specimen (machined at an optimized setting) in simulated body fluid (SBF).ResultsIt is observed from the analysis that Cp, Ip, and Ton play a pivotal role in evaluating response characteristics. The favorable setting suggested by the gray approach is Pa: Zr; Cp: 2 g/l; Ip: 4A; Ton: 50 μs; DC: 80%, while responses at this setting are confirmed by confirmation experiments with MRR: 32.14 mm3/min; SR: 5.578 μm and TAL: 8.28 μm. The immersion test signifies that the corrosion rate (CR) of PMEDMed sample (3.20 mm/year) is 40.74% lesser than the corrosion rate of polished sample (5.40 mm/year).ConclusionZr powder shows better performance in terms of higher MRR, lower SR and higher TAL as compared to Mn powder during the PMEDM process. The corroded surface of polished sample exhibited larger size micro pits and cracks than the machined sample, which concluded that surface modification of MZ-4Zn alloy via PMEDM is a powerful tool to enhance its corrosion resistance.  相似文献   

4.
In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.  相似文献   

5.
BackgroundThe knowledge of the electrochemical property (corrosion resistance) of beta titanium alloys compared to Ti-6Al-4 V for implants is relevant because of the potential cytotoxic effects that the released ions could cause to long-term health.ObjectivesThe objective of this systematic review was to seek information on the electrochemical properties (corrosion resistance) of beta titanium alloys compared to Ti-6Al-4 V since the awareness of the electrochemical behavior of the implant surface in the medium is essential for the best indication of the alloys or compositional changes, which may promote benefits to bone-implant interaction in all areas that this procedure is required.MethodsThe PubMed, LILACS, COCHRANE Library, and Science Direct databases were electronically searched for the terms: dental implants AND beta-titanium AND Ti-6Al-4 V AND electrochemical technics. The inclusion criteria were research articles that studied beta-titanium compared to Ti-6Al-4 V using electrochemical techniques in electrolytes of chemical composition similar to body fluid, published in English, between 2000 and 2020. Articles that did not compare the corrosion resistance of these alloys in electrolytes similar to body fluids were excluded.ResultsA total of 189 articles were restored and selected by title and/or abstract according to the inclusion and exclusion criteria, which resulted in 15 articles that were reduced to 8 after read in full. The studies in vitro evaluated the corrosion resistance in electrolytes Hank, Ringer, SBF, and 0.9 % NaCl, between beta titanium alloys, obtained by arc fusion or bars stock, and Ti-6Al-4 V, for dental or biomedical implants submitted to surface treatments by heat treatment, plasma electrolytic oxidation (PEO), alkaline treatment, and thermomechanical.ConclusionThe evaluated literature allowed to determine that 1) The oxides Nb2O 5, Ta2O 5, and ZrO2 have higher stability and protection quality than that of TiO2 modified by the oxides of Al and V; 2) A higher modulus of elasticity of the Ti-6Al-4 V alloy favors protection against corrosion by maintaining a thicker and more firmly adhered oxide layer; 3) The increase in the thickness of the Ti alloys superficial layer contributes to the improvement of the corrosion resistance.  相似文献   

6.
Although the metal devices used in orthodontic treatments are manufactured highly resistance to corrosion, they may still suffer some localized corrosion resulting from the oral cavity conditions. The corrosion causes the release of metals from the alloys used for their manufacture. In this report, we evaluated the in vivo metal ions release of three alloys (stainless steel, titanium and nickel-free) usually used in the orthodontics treatments and its genotoxicity. We applied to 15 patients, between 12 and 16 years, 4 tubes and 20 brackets. Samples from oral mucosa were taken before the treatment and 30 days later. The concentration of the titanium, chromium, manganese, cobalt, nickel, molybdenum and iron were detected using inductively coupled plasma mass spectrometry (ICP-MS). The genotoxicity was measured with a comet assay (Olive moment). The oral mucosa cells in contact with the stainless steel alloy displayed the greatest titanium and manganese concentrations and those in contact with the nickel-free alloy presented the greatest concentration of chromium and iron. Both alloys, stainless steel and nickel-free, induced a higher DNA damage in the oral mucosa cells than the titanium alloy, in which the Olive moment was similar to controls. Based on the results of our study, we can conclude that titanium brackets and tubes are the most biocompatible of the three alloys.  相似文献   

7.
In contrast to the normal problems of hydrogen sulphide corrosion when closing the water circuits of a secondary fibre plant, Papierfabriek Gennep was confronted with the problem of atmospheric corrosion: namely the formation of oxides, sulphates and sulphides on the metal surfaces in the atmosphere above the water circuits. Copper alloys in motors, neon light fixtures and instrument piping were affected by this rapid corrosion process, especially whenever wood-free coated paper was being de-inked in the secondary fibre plant. This atmospheric corrosion can be explained by the decomposition of formyl-S-coenzyme A into unstable performic acid, which is a strong oxidizing agent, before breaking down into carbon dioxide or formic acid. The formyl-S-coenzyme A is the enzymatic degradation product of fatty acids used in the de-inking process. The required enzymes can be produced in an anaerobic environment by various anaerobic bacteria feeding on the nutrients in casein-coated paper.  相似文献   

8.
The as-quenched (AQ) microstructure of the Ag-containing alloys was found to be essentially a mixture of austenite (γ) and Ag phases. The Ag phase precipitates had a face-centered-cubic structure and lattice parameter a = 4.09 Å. When the alloy contained Ag ≥0.2 wt%, the mechanical properties were slightly enhanced because of the precipitate strengthening by the Ag phase precipitates. Moreover, the Ag-containing alloys exhibited ductile fracture after tensile testing. The results of an antibacterial test revealed that the Ag phase precipitates play a key role in the antibacterial mechanism of Ag-containing alloys: Ag+ ions released from the Ag phase precipitates can kill bacteria. It is suggested that as AISI 316L alloy has an Ag content ≥0.2 wt%, it will have excellent antibacterial properties against both Staphylococcus aureus and Escherichia coli, with an antibacterial rate of nearly 100%.  相似文献   

9.
This paper is a summary of work carried out at the ICMM and deals with the effect of biofilm growth on the marine corrosion of stainless steels and other active-passive alloys. There is evidence regarding the important role played by aerobic bacterial settlement, both on the onset and the propagation of localized corrosion on such alloys and on the enhancement of galvanic corrosion of less noble materials coupled with them. These effects are the consequence of the oxygen reduction depolarization induced by biofilm growth. Hypotheses on the mechanisms by which the presence of the biofilm causes oxygen reduction depolarization, and prevention systems against the microbial induced corrosion, are also discussed.  相似文献   

10.
Biofouling and biocorrosion lead to an important modification of the metal/ solution interface inducing changes in the type and concentration of ions, pH values, oxygen levels, flow velocity, etc. Metal dissolution in seawater is mainly conditioned by two different processes: (a) biofouling settlement and (b) corrosion products formation.Corrosion-resistant alloys such as stainless steel present an ideal substratum for microbial colonization, rather similar to inert non-metallic surfaces, due to the lack of corrosion products. Stainless steels are sensitive to pitting and other types of localized corrosion in chloride-containing media such as seawater. Biofilms and bacterial metabolism may accelerate the initiation of crevice attack by depletion of oxygen in the crevice solution due to microbial respiration. Bacterial colonization occurs within a period of 24–72 h on stainless steel samples exposed to natural seawater and, depending on environmental conditions, a copious and patchy biofilm is generally formed.Different interpretations of biofilms' effects on corrosion are critically discussed. A practical case, involving polluted harbour seawater, is reported to illustrate biofilm and corrosion interactions on stainless steel samples.  相似文献   

11.
Corrosion in bioprocessing applications is described for a 25-year-old bioprocessing pilot plant facility. Various available stainless steel alloys differ greatly in properties owing to the impact of specific alloying elements and their concentrations. The alloy property evaluated was corrosion resistance as a function of composition under typical bioprocessing conditions such as sterilization, fermentation, and cleaning. Several non-uniform forms of corrosion relevant to bioprocessing applications (e.g., pitting, crevice corrosion, intergranular attack) were investigated for their typical causes and effects, as well as alloy susceptibility. Next, the corrosion resistance of various alloys to specific bioprocessing-relevant sources of corrosion (e.g., medium components, acids/bases used for pH adjustment, organic acid by-products) was evaluated, along with the impact of temperature on corrosion progression. Best practices to minimize corrosion included considerations for fabrication (e.g., welding, heat treatments) and operational (e.g., sterilization, media component selection, cleaning) approaches. Assessments and repair strategies for observed corrosion events were developed and implemented, resulting in improved vessel and overall facility longevity.  相似文献   

12.
AISI-1020 carbon steel coupons were fixed onto a water circulation loop in order to study the effect of varying NaCl concentrations on formation of biofilms by natural populations of microorganisms. Overall, we observed a reduction in the number of bacteria attached to the metal surfaces as NaCl levels increased. At 12.85 and 80 g/l NaCl, the respective bacterial counts were: 1.7×109 CFU/cm2 and 7.5×102 CFU/cm2 for aerobic species; 1.3×104 CFU/cm2 and 2.1×10 CFU/cm2 for anaerobic species; and 1.8×103 CFU/cm2 and 4.6×10 CFU/cm2 for sulfate-reducing species. However, the opposite trend was observed for the numbers of iron-reducing bacteria: 4.1×106 CFU/cm2 at 12.85 g/l NaCl and 7.5 108 CFU/cm2 at 80 g/l NaCl, respectively. Fungal counts remained constant throughout the experimental period. The salt concentration at which the maximum corrosion rate was observed was 35 g/l. In view of the marked loss of metal mass recorded at this salinity, AISI-1020 carbon steel proved to belong to the group of alloys less resistant to corrosion. Journal of Industrial Microbiology & Biotechnology (2000) 25, 45–48. Received 07 December 1999/ Accepted in revised form 25 April 2000  相似文献   

13.
Ingestion and inhalation of corrosion products covering weathered penetrators made of depleted uranium (DU) represent potential radiological exposure pathways. In order to study the bioavailability of these corrosion products, their solubility was determined using simulated gastric and pulmonary juices. About 75 and 36% of the uranium in the corrosion products were found to be soluble in simulated gastric and pulmonary juices, respectively. The effective dose coefficient for adults after ingestion was calculated to be 0.61 μSv mg−1 DU. This compares to an effective dose coefficient for an adult of 0.71 μSv mg−1 for DU materials given by the World Health Organization (WHO). The effective dose coefficient for inhalation was calculated to be 3.7 × 10−6 Sv Bq−1 for workers and 5.3 × 10−6 Sv Bq−1 for members of the public, respectively, which is between those of particles of Types M and S as defined by the International Commission on Radiological Protection (ICRP). The speciation of the corrosion products was investigated by time-of-flight secondary ion mass spectrometry (TOF-SIMS). The mean oxidation state of uranium was found to be 4.6, which suggests that the uranium in the corrosion products consists of a mixture of U(IV) and U(VI) species.  相似文献   

14.
The chemically stable (Ti, Nb) ON hard coating is suitable for passivating the 18 dental alloys investigated. The exchange current densities are less than jg = 1 microA/cm2. The corrosion current densities are included in this, and are therefore generally lower. The electrochemical investigations provide no hints as to local corrosion for (Ti, Nb) ON-coated dental alloys, which could be a hazard for patients or for dental work, owing to galvanic corrosion or pitting on long-term use. Irrespective of the coated dental alloy, the coatings have pores, through which the electrolyte is in contact with the substrate material. The resulting local elements have high source resistances, so that with a relative pore-area not exceeding 2% only low galvanic current densities occur.  相似文献   

15.
Alloys based on titanium or cobalt have been used as implant materials for decades with good success. Because of their natural oxide layer these alloys reveal good corrosion behaviour. In contact with physiological solution metal release takes place, which can cause inflammation. Coatings can improve the corrosion behaviour. In this study Ti6Al4V and Co28Cr6Mo alloys, which are frequently used as implant materials, were tested. Polished discs of these alloys and polished discs, which were coated with TiO2-layers by sol-gel chemistry, were compared regarding their corrosion behaviour and metal ion releasing. The releasing of Al, V, Ti, Co, Cr and Mo was quantified by ICP-MS analysis. The TiO2-coating reduced the release of all ions except of the Al-ion. Both alloys showed a deviating kinetic of ion releasing. In addition, cell response (cell vitality, cell proliferation, endothelial marker CD31 and actin allocation) of osteoblasts and endothelial cells were investigated.  相似文献   

16.
A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials.  相似文献   

17.
Microbiologically influenced corrosion: looking to the future.   总被引:5,自引:0,他引:5  
This review discusses the state-of-the-art of research into biocorrosion and the biofouling of metals and alloys of industrial usage. The key concepts needed to understand the main effects of microorganisms on metal decay, and current trends in monitoring and control strategies to mitigate the deleterious effects of biocorrosion and biofouling are also described. Several relevant cases of biocorrosion studied by our research group are provided as examples: (i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; (ii) sulfate-reducing bacteria (SRB)-induced corrosion of steel; (iii) biocorrosion and biofouling interactions in the marine environment; (iv) monitoring strategies for assessing biocorrosion in industrial water systems; (v) microbial inhibition of corrosion; (vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. Future prospects in the field are described with respect to the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopic techniques for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis).  相似文献   

18.
Nuclear corrosion technique has been developed for the assay of various heavy metals released through corrosion and abrasion into electrolytes from various biomaterials like amalgams, chromium— cobalt and gold alloys, steel, and titanium. Application of the technique in measurement of selective release rates under static or dynamic conditions, i.e., during cyclic loading, is discussed. The elements chromium, cobalt, copper, gold, iron, mercury, molybdenum, silver, titanium, and zinc have been quantitatively assessed. In vivo corrosion measurements are further included. By combining the present nuclear tracer technique with ESCA technique, knowledge about reaction mechanisms occurring at the interface solid/liquid is obtained. Exposure of humans to various heavy metals from biomaterials, e.g., dental materials, can be estimated using the NCM technique. The technique also has a potential for selective release measurements of several nuclides possessing suitable radioanalytical properties from other types of alloys immersed in various liquid environments.  相似文献   

19.
The main aim of this work was to study the simultaneous wear-corrosion of titanium (Ti) in the presence of biofilms composed of Streptococcus mutans and Candida albicans. Both organisms were separately grown in specific growth media, and then mixed in a medium supplemented with a high sucrose concentration. Corrosion and tribocorrosion tests were performed after 48 h and 216 h of biofilm growth. Electrochemical corrosion tests indicated a decrease in the corrosion resistance of Ti in the presence of the biofilms although the TiO2 film presented the characteristics of a compact oxide film. While the open circuit potential of Ti indicated a tendency to corrosion in the presence of the biofilms, tribocorrosion tests revealed a low friction on biofilm covered Ti. The properties of the biofilms were similar to those of the lubricant agents used to decrease the wear rate of materials. However, the pH-lowering promoted by microbial species, can lead to corrosion of Ti-based oral rehabilitation systems.  相似文献   

20.
A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H2S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor “A”, two received corrosion inhibitor “B”, and two (“untreated”) received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号