首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determining the genetic basis of inbreeding depression is important for understanding the role of selection in the evolution of mixed breeding systems. Here, we investigate how androdioecy (a breeding system characterized by partial selfing and outcrossing) and dioecy (characterized by obligatory outcrossing) influence the experimental evolution of inbreeding depression in Caenorhabditis elegans. We derived inbred lines from ancestral and evolved populations and found that the dioecious lineages underwent more extinction than androdioecious lineages. For both breeding systems, however, there was selection during inbreeding because the diversity patterns of 337 single-nucleotide polymorphisms (SNPs) among surviving inbred lines deviated from neutral expectations. In parallel, we also followed the evolution of embryo to adult viability, which revealed similar starting levels of inbreeding depression in both breeding systems, but also outbreeding depression. Under androdioecy, diversity at a neutral subset of 134 SNPs correlated well with the viability trajectories, showing that the population genetic structure imposed by partial selfing affected the opportunity for different forms of selection. Our findings suggest that the interplay between the disruptions of coevolved sets of loci by outcrossing, the efficient purging of deleterious recessive alleles with selfing and overdominant selection with outcrossing can help explain mixed breeding systems.  相似文献   

2.
Outcrossing is predicted to facilitate more rapid adaptation than self-fertilization as a result of genetic exchange between genetically variable individuals. Such genetic exchange may increase the efficacy of selection by breaking down Hill-Robertson interference, as well as promoting the maintenance of within-lineage genetic diversity. Experimental studies have demonstrated the selective advantage of outcrossing in novel environments. Here, we assess the specific role of genetic variation in the evolution of outcrossing. We experimentally evolved genetically variable and inbred populations of mixed mating (outcrossing and self-fertilizing) Caenorhabditis elegans nematodes under novel ecological conditions—specifically the presence of the virulent parasite Serratia marcescens. Outcrossing rates increased in genetically variable host populations evolved in the presence of the parasite, whereas parasite exposure in inbred populations resulted in reduced rates of host outcrossing. The host populations with genetic variation also exhibited increased fitness in the presence of the parasite over eight generations, whereas inbred populations did not. This increase in fitness was primarily the result of adaptation to the parasite, rather than recovery from initial inbreeding depression. Therefore, the benefits of outcrossing were only manifested in the presence of genetic variation, and outcrossing was favored over self-fertilization as a result. As predicted, the benefits of outcrossing under novel ecological conditions are a product of genetic exchange between genetically diverse lineages.  相似文献   

3.
Theoretical analyses of inbreeding suggest that following an increased degree of inbreeding there may be a temporary recovery of fitness, because of selection either within or among inbred lineages. This is possible because selection can act more efficiently to remove deleterious alleles given the greater homozygosity of such populations. If common, recovery of fitness following inbreeding may be important for understanding some evolutionary processes and for management strategies of remnant populations, yet empirical evidence for such recovery in animals is scant. Here we describe the effects of single-pair population bottlenecks on a measure of fitness in Drosophila melanogaster. We compared a large number of families from each of 52 inbred lines with many families from the outbred population from which the inbred lineages were derived. Measures were made at the third and the 20th generations after the bottleneck. In both generations there was, on average, substantial inbreeding depression together with a highly significant variance among the inbred lines in the amount of fitness reduction. The average fitness of inbred lines was correlated across generations. Our data provide evidence for the possibility of recovery of fitness at two levels, because (i) the average fitness reduction in the F20 generation was significantly less than in the F3 generation, which implies that selection within lines has occurred, and (ii) the large variance in inbreeding depression among inbred lines implies that selection among them is possible. The high variance in inbreeding depression among replicate lines implies that modes of evolution which require a low level of inbreeding depression can function at least in a fraction of inbred populations within a species and that results from studies with low levels of replication should be treated with caution.  相似文献   

4.
Willis JH 《Genetics》1999,153(4):1885-1898
The goal of this study is to provide information on the genetics of inbreeding depression in a primarily outcrossing population of Mimulus guttatus. Previous studies of this population indicate that there is tremendous inbreeding depression for nearly every fitness component and that almost all of this inbreeding depression is due to mildly deleterious alleles rather than recessive lethals or steriles. In this article I assayed the homozygous and heterozygous fitnesses of 184 highly inbred lines extracted from a natural population. Natural selection during the five generations of selfing involved in line formation essentially eliminated major deleterious alleles but was ineffective in purging alleles with minor fitness effects and did not appreciably diminish overall levels of inbreeding depression. Estimates of the average degree of dominance of these mildly deleterious alleles, obtained from the regression of heterozygous fitness on the sum of parental homozygous fitness, indicate that the detrimental alleles are partially recessive for most fitness traits, with h approximately 0.15 for cumulative measures of fitness. The inbreeding load, B, for total fitness is approximately 1.0 in this experiment. These results are consistent with the hypothesis that spontaneous mildly deleterious mutations occur at a rate >0.1 mutation per genome per generation.  相似文献   

5.
Severe inbreeding depression is routinely observed in outcrossing species. If inbreeding load is due largely to deleterious alleles of large effect, such as recessive lethals or steriles, then most of it is expected to be purged during brief periods of inbreeding. In contrast, if inbreeding depression is due to the cumulative effects of many deleterious alleles of small effect, then it will be maintained in the face of periodic inbreeding. Whether or not inbreeding depression can be purged with inbreeding in the short term has important implications for the evolution of mating systems and the probability that a small population will go extinct. In this paper I evaluate the extent to which the tremendous inbreeding load in a primarily outcrossing population of the wildflower, Mimulus guttatus, is due to alleles of large effect. To do this, I first constructed a large outbred “ancestral” population by randomly mating plants collected as seeds from a natural population. From this population I formed 1200 lines that were maintained by self-fertilization and single seedling descent: after five generations of selling, 335 lines had survived the inbreeding process. Selection during the line formation is expected to have largely purged alleles of large effect from the collection of highly inbred lines. Because alleles with minor effects on fitness should have been effectively neutral, the inbreeding depression due to this class of genes should have been unchanged. The inbred lines were intercrossed to form a large, outcrossed “purged” population. Finally, I estimated the fitness of outbred and selfed progeny from the ancestral and purged populations to determine the contribution of major deleterious alleles on inbreeding depression. I found that although the average fitness of the outcrossed progeny nearly doubled following purging, the limited decline in inbreeding depression and limited increase in inbred fitness indicates that alleles of large effect are not the principle cause of inbreeding depression in this population. In aggregate, the data suggest that lethals and steriles make a minority contribution to inbreeding depression and that the increased outbred fitness is due primarily to adaptation to greenhouse conditions.  相似文献   

6.
H W Deng 《Genetics》1998,150(2):945-956
Deng and Lynch recently proposed estimating the rate and effects of deleterious genomic mutations from changes in the mean and genetic variance of fitness upon selfing/outcrossing in outcrossing/highly selfing populations. The utility of our original estimation approach is limited in outcrossing populations, since selfing may not always be feasible. Here we extend the approach to any form of inbreeding in outcrossing populations. By simulations, the statistical properties of the estimation under a common form of inbreeding (sib mating) are investigated under a range of biologically plausible situations. The efficiencies of different degrees of inbreeding and two different experimental designs of estimation are also investigated. We found that estimation using the total genetic variation in the inbred generation is generally more efficient than employing the genetic variation among the mean of inbred families, and that higher degree of inbreeding employed in experiments yields higher power for estimation. The simulation results of the magnitude and direction of estimation bias under variable or epistatic mutation effects may provide a basis for accurate inferences of deleterious mutations. Simulations accounting for environmental variance of fitness suggest that, under full-sib mating, our extension can achieve reasonably well an estimation with sample sizes of only approximately 2000-3000.  相似文献   

7.
Genetic rescue has been proposed as a management strategy to improve the fitness of genetically eroded populations by alleviating inbreeding depression. We studied the dynamics of genetic rescue in inbred populations of Drosophila. Using balancer chromosomes, we show that the force of heterosis that accompanies genetic rescue is large and allows even a recessive lethal to increase substantially in frequency in the rescued populations, particularly at stress temperatures. This indicates that deleterious alleles present in the immigrants can increase significantly in frequency in the recipient population when they are in linkage disequilibrium with genes responsible for the heterosis. In a second experiment we rescued eight inbred Drosophila populations with immigrants from two other inbred populations and observe: (i) there is a significant increase in viability both 5 and 10 generations after the rescue event, showing that the increase in fitness is not transient but persists long-term. (ii) The lower the fitness of the recipient population the larger the fitness increase. (iii) The increase in fitness depends significantly on the origin of the rescuers. The immigrants used were fixed for a conditional lethal that was mildly deleterious at 25°C but lethal at 29°C. By comparing fitness at 25°C (the temperature during the rescue experiment) and 29°C, we show that the lethal allele reached significant frequencies in most rescued populations, which upon renewed inbreeding became fixed in part of the inbred lines. In conclusion, in addition to the fitness increase genetic rescue can easily result in a substantial increase in the frequency of mildly deleterious alleles carried by the immigrants. This can endanger the rescued population greatly when it undergoes recurrent inbreeding. However, using a sufficient number of immigrants and to accompany the rescue event with the right demographic measures will overcome this problem. As such, genetic rescue still is a viable option to manage genetically eroded populations.  相似文献   

8.
Caenorhabditis elegans can reproduce exclusively by self-fertilization. Yet, males can be maintained in laboratory populations, a phenomenon that continues to puzzle biologists. In this study we evaluated the role of males in facilitating adaptation to novel environments. For this, we contrasted the evolution of a fitness component exclusive to outcrossing in experimental populations of different mating systems. We introgressed a modifier of outcrossing into a hybrid population derived from several wild isolates to transform the wild-type androdioecious mating system into a dioecious mating system. By genotyping 375 single-nucleotide polymorphisms we show that the two populations had similar standing genetic diversity available for adaptation, despite the occurrence of selection during their derivation. We then performed replicated experimental evolution under the two mating systems from starting conditions of either high or low levels of diversity, under defined environmental conditions of discrete non-overlapping generations, constant density at high population sizes (N = 104), no obvious spatial structure and abundant food resources. During 100 generations measurements of sex ratios and male competitive performance showed: 1) adaptation to the novel environment; 2) directional selection on male frequency under androdioecy; 3) optimal outcrossing rates of 0.5 under androdioecy; 4) the existence of initial inbreeding depression; and finally 5) that the strength of directional selection on male competitive performance does not depend on male frequencies. Taken together, these results suggest that androdioecious males are maintained at intermediate frequencies because outcrossing is adaptive.  相似文献   

9.
We tested the hypothesis that small, isolated populations would show less depression in fitness when inbred than would large, central populations. Laboratory stocks of Peromyscus leucopus and P. polionotus were established from insular, peninsular, and central populations. The isolated populations had one-third to one-half the genic diversity of central populations. Responses to inbreeding were highly varied: some populations had smaller litters, others experienced higher mortality, some showed slower growth rates, and one displayed no measurable effects when inbred. These results suggest that inbreeding depression is controlled by a small number of genes and that the size of the genetic load depends on which alleles are present in the founders of a population. The severity of fitness depression in inbred litters did not correlate with initial genic diversity of the stocks nor, therefore, with the size of the wild populations. Fitness measures appeared linearly related to the inbreeding coefficient of the liters, with no diminution of deleterious effects through subsequent generations of inbreeding. Thus overdominance of fitness traits probably contributed as much to the genetic load as did deleterious recessive alleles. The inbreeding level of the dam negatively affected the size, growth, and survival of litters only in genetically diverse populations, indicating that the load of recessive alleles negatively impacting maternal care may have been reduced by selection in the more peripheral populations during past bottlenecks.  相似文献   

10.
Understanding how the mating system varies with population size in plant populations is critical for understanding their genetic and demographic fates. We examined how the mating system, characterized by outcrossing rate, biparental inbreeding rate, and inbreeding coefficient, and genetic diversity varied with population size in natural populations of the biennial Sabatia angularis. We found a significant, positive relationship between outcrossing and population size. Selfing was as high as 40% in one small population but was only 7% in the largest population. Despite this pattern, observed heterozygosity did not vary with population size, and we suggest that selection against inbred individuals maintains observed heterozygosity in small populations. Consistent with this hypothesis, we found a trend of lower inbreeding coefficients in the maternal than progeny generation in all of the populations, and half of the populations exhibited significant excesses of adult heterozygosity. Moreover, genetic diversity was not related to population size and was similar across all populations examined. Our results suggest that the consequences of increased selfing for population fitness in S. angularis, a species that experiences significant inbreeding depression, will depend on the relative magnitude and consistency of inbreeding depression and the demographic cost of selection for outcrossed progeny in small populations.  相似文献   

11.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

12.
Data on the effects of inbreeding on fitness components are reviewed in the light of population genetic models of the possible genetic causes of inbreeding depression. Deleterious mutations probably play a major role in causing inbreeding depression. Putting together the different kinds of quantitative genetic data, it is difficult to account for the very large effects of inbreeding on fitness in Drosophila and outcrossing plants without a significant contribution from variability maintained by selection. Overdominant effects of alleles on fitness components seem not to be important in most cases. Recessive or partially recessive deleterious effects of alleles, some maintained by mutation pressure and some by balancing selection, thus seem to be the most important source of inbreeding depression. Possible experimental approaches to resolving outstanding questions are discussed.  相似文献   

13.
Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125–234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.Subject terms: Quantitative trait, Inbreeding  相似文献   

14.
Evolutionary stability of dioecy and nuclear gynodioecy in higher plants requires that females produce over twice as many successful seeds as hermaphrodites. This fitness differential is widely thought to derive primarily from the advantages of outcrossing caused by high selfing rates and inbreeding depression in the hermaphrodite. This study hypothesized that (i) extraordinarily high deleterious mutation rates are necessary to double female seed success due to outcrossing, and (ii) the large difference in outcrossing rates between sex morphs causes differential purging of these mutations, resulting in additional genetic selection on male sterility. Using genetically explicit models, I showed that the phenotypic outcrossing advantage requires at least one new highly recessive deleterious mutation per genome per generation, regardless of selection coefficient. However, under this mutational regime, differential purging created strong genetic selection against recessive male sterility that overwhelmed the phenotypic selection in favour of outcrossing. In very small populations and for dominant male sterility, this genetic selection was weaker or absent. This first genetically explicit study of the outcrossing advantage of unisexual females may shed new light on both the genetic and selective conditions for the evolution of gynodioecy and dioecy.  相似文献   

15.
I present analytical predictions for the equilibrium inbreeding load expected in a population under mutation, selection, and a regular mating system for any population size and for any magnitude and recessivity of the deleterious effects. Using this prediction, I deduce the relative fitness of mutant alleles with small effect on selfing to explore the situations where selfing or outcrossing are expected to evolve. The results obtained are in agreement with previous literature, showing that natural selection is expected to lead to stable equilibria where populations show either complete outcrossing or complete selfing, and that selfing is promoted by large deleterious mutation rates. I find that the evolution of selfing is favored by a large recessivity of deleterious effects, while the magnitude of homozygous deleterious effects only becomes relevant in relatively small populations. This result contradicts the standard assumption that purging in large populations will only promote selfing when homozygous deleterious effects are large, and implies that previously published results obtained assuming lethal mutations in large populations can be extrapolated to nonlethal alleles of similar recessivity. This conclusion and the general approach used in this analysis can be useful in the study of the evolution of mating systems.  相似文献   

16.
It is crucial to understand the genetic health and implications of inbreeding in wildlife populations, especially of vulnerable species. Using extensive demographic and genetic data, we investigated the relationships among pedigree inbreeding coefficients, metrics of molecular heterozygosity and fitness for a large population of endangered African wild dogs (Lycaon pictus) in South Africa. Molecular metrics based on 19 microsatellite loci were significantly, but modestly correlated to inbreeding coefficients in this population. Inbred wild dogs with inbreeding coefficients of ??0.25 and subordinate individuals had shorter lifespans than outbred and dominant contemporaries, suggesting some deleterious effects of inbreeding. However, this trend was confounded by pack-specific effects as many inbred individuals originated from a single large pack. Despite wild dogs being endangered and existing in small populations, findings within our sample population indicated that molecular metrics were not robust predictors in models of fitness based on breeding pack formation, dominance, reproductive success or lifespan of individuals. Nonetheless, our approach has generated a vital database for future comparative studies to examine these relationships over longer periods of time. Such detailed assessments are essential given knowledge that wild canids can be highly vulnerable to inbreeding effects over a few short generations.  相似文献   

17.
Escobar JS  Nicot A  David P 《Genetics》2008,180(3):1593-1608
Understanding how parental distance affects offspring fitness, i.e., the effects of inbreeding and outbreeding in natural populations, is a major goal in evolutionary biology. While inbreeding is often associated with fitness reduction (inbreeding depression), interpopulation outcrossing may have either positive (heterosis) or negative (outbreeding depression) effects. Within a metapopulation, all phenomena may occur with various intensities depending on the focal population (especially its effective size) and the trait studied. However, little is known about interpopulation variation at this scale. We here examine variation in inbreeding depression, heterosis, and outbreeding depression on life-history traits across a full-life cycle, within a metapopulation of the hermaphroditic snail Physa acuta. We show that all three phenomena can co-occur at this scale, although they are not always expressed on the same traits. A large variation in inbreeding depression, heterosis, and outbreeding depression is observed among local populations. We provide evidence that, as expected from theory, small and isolated populations enjoy higher heterosis upon outcrossing than do large, open populations. These results emphasize the need for an integrated theory accounting for the effects of both deleterious mutations and genetic incompatibilities within metapopulations and to take into account the variability of the focal population to understand the genetic consequences of inbreeding and outbreeding at this scale.  相似文献   

18.
Deng HW  Gao G  Li JL 《Genetics》2002,162(3):1487-1500
The genomes of all organisms are subject to continuous bombardment of deleterious genomic mutations (DGM). Our ability to accurately estimate various parameters of DGM has profound significance in population and evolutionary genetics. The Deng-Lynch method can estimate the parameters of DGM in natural selfing and outcrossing populations. This method assumes constant fitness effects of DGM and hence is biased under variable fitness effects of DGM. Here, we develop a statistical method to estimate DGM parameters by considering variable mutation effects across loci. Under variable mutation effects, the mean fitness and genetic variance for fitness of parental and progeny generations across selfing/outcrossing in outcrossing/selfing populations and the covariance between mean fitness of parents and that of their progeny are functions of DGM parameters: the genomic mutation rate U, average homozygous effect s, average dominance coefficient h, and covariance of selection and dominance coefficients cov(h, s). The DGM parameters can be estimated by the algorithms we developed herein, which may yield improved estimation of DGM parameters over the Deng-Lynch method as demonstrated by our simulation studies. Importantly, this method is the first one to characterize cov(h, s) for DGM.  相似文献   

19.
Inbreeding depression, which generally affects the fitness of small populations, may be diminished by purging recessive deleterious alleles when inbreeding persists over several generations. Evidence of purging remains rare, especially because of the difficulties of separating the effects of various factors affecting fitness in small populations. We compared the expression of life-history traits in inbred populations of guppy (Poecilia reticulata) with contemporary control populations over 10 generations in captivity. We estimated inbreeding depression as the difference between the two types of populations at each generation. After 10 generations, the inbreeding coefficient reached a maximum value of 0.56 and 0.16 in the inbred and control populations, respectively. Analysing changes in the life-history traits across generations showed that inbreeding depression in clutch size and offspring survival increased during the first four to six generations in the populations from the inbred treatment and subsequently decreased as expected if purging occurred. Inbreeding depression in two other traits was weaker but showed similar changes across generations. The loss of six populations in the inbred treatment indicates that removal of deleterious alleles also occurred by extinction of populations that presumably harboured high genetic load.  相似文献   

20.
Fragmented populations may face high risk of extinction due to the deleterious consequences of increased inbreeding or of genetic drift in small and isolated populations. Theories on the mechanisms of inbreeding depression predict that the severity of inbreeding depression can eventually decrease in populations that persistently inbreed, and hence populations that are isolated through habitat fragmentation might experience a decrease in inbreeding depression over time. In this study, we tested this hypothesis using the patchily distributed, outcrossing annual plant, Clarkia concinna concinna (Onagraceae), which naturally experiences many fragmentation effects. We collected seeds from isolated and central subpopulations and created artificially inbred and outcrossed lines. Progeny from these crosses were planted into the field and greenhouse and assayed for fitness traits over the course of a growing season. Overall, inbreeding depression was substantial, ranging as high as 0.76 (for cumulative fitness in the field), and significant for plant height, fecundity, and above-ground biomass in all experiments. No inbreeding depression was detected for germination or survival rates in the greenhouse experiments, but in the field, survival was significantly depressed for inbred progeny. There was no evidence to support our hypothesis that increased inbreeding in isolated populations would lead to the purging of deleterious alleles and a decrease in the severity inbreeding depression. The most likely hypothesis to explain our results is that purging is not occurring more strongly in the isolated populations due to details of a number of genetic factors (e.g., selection against deleterious alleles is inconsistent or insufficient, or drift has caused fixation of deleterious alleles in these populations). This study supports the view that even when inbreeding depression is predicted to be less problematic, it may still be an important force influencing the fitness of populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号