首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Absent in melanoma 2 (AIM2) is a critical component in natural immunity system and is closely related to cancer initiation and development. It has been shown that AIM2 inhibited colorectal cancer (CRC) development and cell proliferation. It remains unresolved how AIM2 acts on CRC metastasis. In this study, we assessed migration, invasion ability, and epithelial-mesenchymal transition (EMT) program upon AIM2 overexpression or knockdown in human CRC cells. Transwell assay demonstrated that upregulation of AIM2 reduced cell migration and invasion. Epithelial marker E-cadherin was augmented and mesenchymal markers vimentin, as well as Snail, were examined decreased by Western blot, real-time polymerase chain reaction, and immunofluorescence. Correspondingly, knockdown of AIM2 led to a reverse consequence. In addition, AIM2 regulated Akt phosphorylation and effects of AIM2 on cell invasion and EMT were recovered after administration of Akt inhibitor, suggesting that AIM2 suppressed EMT dependent on Akt pathway. In addition, caspase-1 inhibitor exposure indicated that AIM2 abrogated EMT through the inflammasome pathway as well. In summary, AIM2 suppressed EMT via Akt and inflammasome pathways in human CRC cells.  相似文献   

4.
Circular RNAs (circRNAs) have been demonstrated to be important regulators in human malignant tumors, including colorectal cancer (CRC). While the role circ-ZEB1 played in CRC remains unclear. In this study, we aim to explore the biological function and the underlying mechanism of circ-ZEB1 in CRC. RNAscope was used to analyze the expression and localization of circ-ZEB1 in CRC tissues. Loss of function experiments were conducted, including CCK-8, transwell assays, flow cytometry analysis, and murine xenograft models, so as to detect the effect of circ-ZEB1 on CRC cells. IC50 assay was used to evaluate the influence of circ-ZEB1 on the chemoresistance of CRC cells. Epithelial-mesenchymal transition (EMT) related markers were detected. The relationship between circ-ZEB1 and miR-200c-5p was investigated by FISH, dual-luciferase reporter assay, and RIP assay. We found in our study that circ-ZEB1 was significantly upregulated in CRC tissues. Downregulation of circ-ZEB1 inhibited cell proliferation, colony formation, as well as cell migration and invasion abilities of CRC cell lines. In vivo experiments indicated that knockdown of circ-ZEB1 suppressed tumorigenesis and distant metastasis of CRC cells in nude mice. What's more, EMT and chemoresistance of CRC cells were also attenuated following circ-ZEB1 knockdown. Mechanistically, we proved that circ-ZEB1 could directly bind with miR-200c and functioned as miR-200c sponge to exert its biological functions in CRC cells. In conclusion, circ-ZEB1 could promote CRC cells progression, EMT, and chemoresistance via acting on miR-200c, elucidating a potential therapeutic target to inhibit CRC progression.  相似文献   

5.
目的:研究miRNA-96在结直肠癌转移中的作用及其机制。方法:采用Transwell试验分析结直肠癌Lo Vo细胞的迁移和侵袭能力,采用荧光素报告基因及蛋白免疫印迹试验研究结直肠癌中miR-96的作用靶点。结果:miR-96抑制剂处理后下调miR-96的表达并抑制Lo Vo细胞的迁移和侵袭。荧光素报告基因试验显示RECK是miR-96的作用靶点,且RECK沉默能够部分阻碍miR-96抑制剂所导致的Lo Vo细胞迁移和侵袭减少。结论:miRNA-96可通过作用于RECK促进结直肠癌细胞转移,这可能成为治疗结直肠癌转移的新靶点。  相似文献   

6.
Colorectal cancer (CRC) is frequently a lethal disease because of metastasis. Actin cytoskeletal rearrangement is an essential step in cell migration during activation of the epithelial-mesenchymal transition (EMT) program, which is associated with metastatic properties of cancer cells. Cofilin-1 protein modulates actin dynamics by promoting actin treadmilling, thereby driving membrane protrusion and cell migration and invasion. However, the role of cofilin-1 during EMT in CRC is unknown. Here, we show that cofilin-1 and p-cofilin-1 have distinct subcellular distribution in EMT cells, as determined by super-resolution microscopy images, indicating distinct roles in different areas of cells. Silenced cofilin-1 cells treated with TGF-β (siCofilin-1/TGF-β) evaded p-LIMK2-p-cofilin-1 status, leading to recovery of E-cadherin and claudin-3 at the cell-cell contact and their respective protein levels, actin reorganization, and decreased mesenchymal protein level. Furthermore, siCofilin-1/TGF-β cells exhibited decreased migration and invasion rates as well as MMP-2 and -9 activity and augmented focal adhesion size. The expression of an inactive phospho-cofilin-1 mimetic (S3E) reduced E-cadherin and claudin-3 in cell-cell contacts, reduced their protein levels, and increased vimentin protein. Based on our findings, we suggest that cofilin-1 is crucial to switching from epithelial to mesenchymal-like morphology and cell migration and invasion by regulating actin cytoskeleton organization through activation of RhoA-LIMK2-cofilin-1 signaling, impacting the cell-cell adhesion organization of colon cancer cells in EMT.  相似文献   

7.
The COVID-19 pandemic led to the delay of colorectal cancer (CRC) diagnosis, which causes CRC to be treated at more advanced, often metastatic stages. Unfortunately, there is no effective treatment for metastatic CRC stages, which are considered the leading cause of patients' death. The mortality induced by SARS-CoV-2 is significantly higher in cancer patients than in patients with other diseases. Interestingly, COVID-19 patients often develop fibrosis which depends on epithelial-mesenchymal transition (EMT) – the process also involved in cancer progression. The study aimed to verify whether SARS-CoV-2 induces EMT and consequently increases the invasion potential of colon cancer cells.CRC cells were stimulated with SARS-CoV-2 S and N protein peptides and epithelial and mesenchymal markers were analysed with Western blotting to detect the occurrence of the EMT. The migration, invasion assays and MMP-7 secretion were employed to evaluate the potential of SARS-CoV-2 to stimulate the cells invasion in vitro. ELISA assay, TGF-β1 neutralizing antibodies, TGF-βR silencing and inhibitors were used to investigate the role of the TGF-β1 signalling pathways in the SARS-CoV-2-dependent CRC stimulation.The SARS-CoV-2 induced EMT, which increased the invasion ability of CRC cells. Moreover, the SARS-CoV-2 proteins drive colon cancer cell invasion through TGF-β1. Additionally, secreted TGF-β1 induced a bystander effect in colon cancer cells. However, blocking TGF-β1/Smad- and -non-Smad-dependent pathways suppressed the SARS-CoV-2-induced invasiveness of CRC. In conclusion, we revealed that SARS-CoV-2 stimulates the invasion abilities of CRC by regulating TGF-β1-induced EMT. Our results provide a theoretical basis for using anti-TGF-β1 therapy to reduce the risk of CRC metastasis during SARS-CoV-2 infection.  相似文献   

8.
The major cause of cancer-related deaths in patients with lung adenocarcinoma (LAD) is due to distant metastasis. Many reports have indicated that miRNA plays a key role in tumour metastasis. The expression of miR-197 is correlated with LAD progression, however, the mechanism of miR-197 is still unknown in the processing of LAD. A Boyden chamber migration/invasion assay was used for the metastatic function study in vitro. Real-time PCR and Western blot assays were employed to analyse the EMT hallmark changes in both the mRNA and protein levels. \(3^{\prime }\)-UTR reporter luciferase assay was used to show that HIPK2 is a direct target of miR-197. miR-197 enhances LAD cell migration and invasion miR-197. The downregulation of miR-197 suppresses the EMT and migration ability. HIPK2 is a direct functional target of miR-197 in LAD metastasis. In summary, miR-197 controls EMT and metastasis by directly silencing HIPK2. The findings suggest that interfering with the miR-197-dependent regulation of HIPK2 could be a useful approach for the treatment of patients with late stage metastatic LAD.  相似文献   

9.
Cruz C  Ventura F  Bartrons R  Rosa JL 《FEBS letters》2001,488(1-2):74-80
Members of the HERC (domain homologous to E6 associated protein carboxy-terminus and RCC1 domain protein) family may function both as guanine nucleotide exchange factors and E3 ubiquitin ligases. Here we identify an unstudied member, HERC3. This protein was recognized by specific antibodies in different cell types. HERC3 was located in the cytosol and in vesicular-like structures containing beta-COP, ARF and Rab5 proteins. Involvement of HERC3 in the ubiquitin system was suggested by its ability to interact with ubiquitin. The conserved cysteine in HECT proteins was not essential for this non-covalent binding. Moreover, HERC3 was a substrate of ubiquitination being degraded by the proteasome. These observations indicate a fine regulation of HERC3 and suggest a role in vesicular traffic and ubiquitin-dependent processes.  相似文献   

10.
Cancer-associated fibroblasts (CAFs) have been shown to play a strong role in colorectal cancer metastasis, yet the underlying mechanism remains to be fully elucidated. Using CRC clinical samples together with ex vivo CAFs-CRC co-culture models, we found that CAFs induce expression of Leucine Rich Alpha-2-Glycoprotein 1(LRG1) in CRC, where it shows markedly higher expression in metastatic CRC tissues compared to primary tumors. We further show that CAFs-induced LRG1 promotes CRC migration and invasion that is concomitant with EMT (epithelial-mesenchymal transition) induction. In addition, this signaling axis has also been confirmed in the liver metastatic mouse model which displayed CAFs-induced LRG1 substantially accelerates metastasis. Mechanistically, we demonstrate that CAFs-secreted IL-6 (interleukin-6) is responsible for LRG1 up-regulation in CRC, which occurs through a direct transactivation by STAT3 following JAK2 activation. In clinical CRC tumor samples, LRG1 expression was positively correlated with CAFs-specific marker, α-SMA, and a higher LRG1 expression predicted poor clinical outcomes especially distant metastasis free survival, supporting the role of LRG1 in CRC progression. Collectively, this study provided a novel insight into CAFs-mediated metastasis in CRC and indicated that therapeutic targeting of CAFs-mediated IL-6-STAT3-LRG1 axis might be a potential strategy to mitigate metastasis in CRC.Subject terms: Colon cancer, Cancer microenvironment  相似文献   

11.
We previously reported a novel positive feedback loop between thioredoxin‐1 (Trx‐1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx‐1 and S100P in CRC epithelial‐to‐mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx‐1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx‐1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx‐1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P‐ or Trx‐1‐mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P‐ or Trx‐1‐induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx‐1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx‐1 knockdown‐induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx‐1 and S100P promoted CRC EMT as well as migration and invasion by up‐regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC.  相似文献   

12.
A novel antisense lncRNA NT5E was identified in a previous microarray that was clearly up‐regulated in pancreatic cancer (PC) tissues. However, its biological function remains unclear. Thus, we aimed to explore its function and clinical significance in PC. The lncNT5E expression was determined in PC specimens and cell lines. In vitro and in vivo studies detected the impact of lncNT5E depletion on PC cell proliferation, migration and invasion. Western blotting investigated the epithelial‐mesenchymal transition (EMT) markers. The interaction between lncNT5E and the promoter region of SYNCRIP was detected by dual‐luciferase reporter assay. The role of lncNT5E in modulating SYNCRIP was investigated in vitro. Our results showed that lncNT5E was significantly up‐regulated in PC tissues and cell lines and associated with poor prognosis. LncNT5E depletion inhibited PC cell proliferation, migration, invasion and EMT in vitro and caused tumorigenesis arrest in vivo. Furthermore, SYNCRIP knockdown had effects similar to those of lncNT5E depletion. A significant positive relationship was observed between lncNT5E and SYNCRIP. Moreover, the dual‐luciferase reporter assays indicated that lncNT5E depletion significantly inhibited SYNCRIP promoter activity. Importantly, the malignant phenotypes of lncNT5E depletion were rescued by overexpressing SYNCRIP. In conclusion, lncNT5E predicts poor prognosis and promotes PC progression by modulating SYNCRIP expression.  相似文献   

13.
14.
Colorectal tumorigenesis is a heterogeneous disease driven by multiple genetic and epigenetic alterations. F-box and WD repeat domain containing 11 (FBXW11) is a member of the F-box protein family that regulates the ubiquitination of key factors associated with tumor growth and aggressiveness. Our study aimed to explore the role of FBXW11 in the development and metastasis of colorectal cancer (CRC). FBXW11 was overexpressed in colorectal tumor tissues and its overexpression was associated with a poor prognosis of CRC patients. The upregulation of FBXW11 not only promoted cell proliferation, invasion, and migration, but also contributed to maintaining stem-cell features in colorectal tumor cells. Further analysis revealed that FBXW11 targeted hypermethylated in cancer 1 (HIC1) and reduced its stability in CRC cells through ubiquitination. Moreover, the expression of sirtuin 1 (SIRT1), a deacetylase in tumor cells was upregulated by FBXW11 via regulating HIC1 expression. The mouse xenograft models of CRC confirmed that FBXW11 knockdown impeded colorectal tumor growth and liver metastasis in vivo. In summary, our study identified FBXW11 as an oncogenic factor that contributed to stem-cell-like properties and liver metastasis in CRC via regulating HIC1-mediated SIRT1 expression. These results provide a rationale for the development of FBXW11-targeting drugs for CRC patients.Subject terms: Cancer, Endocrine system and metabolic diseases  相似文献   

15.
SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we reported that SPHK1 induced the epithelial-mesenchymal transition (EMT) by accelerating CDH1/E-cadherin lysosomal degradation and facilitating the invasion and metastasis of HepG2 cells. Initially, we found that SPHK1 promoted cell migration and invasion and induced the EMT process through decreasing the expression of CDH1, which is an epithelial marker. Furthermore, SPHK1 accelerated the lysosomal degradation of CDH1 to induce EMT, which depended on TRAF2 (TNF receptor associated factor 2)-mediated macroautophagy/autophagy activation. In addition, the inhibition of autophagy recovered CDH1 expression and reduced cell migration and invasion through delaying the degradation of CDH1 in SPHK1-overexpressing cells. Moreover, the overexpression of SPHK1 produced intracellular sphingosine-1-phosphate (S1P). In response to S1P stimulation, TRAF2 bound to BECN1/Beclin 1 and catalyzed the lysine 63-linked ubiquitination of BECN1 for triggering autophagy. The deletion of the RING domain of TRAF2 inhibited autophagy and the interaction of BECN1 and TRAF2. Our findings define a novel mechanism responsible for the regulation of the EMT via SPHK1-TRAF2-BECN1-CDH1 signal cascades in HCC cells. Our work indicates that the blockage of SPHK1 activity to attenuate autophagy may be a promising strategy for the prevention and treatment of HCC.  相似文献   

16.
CIB1 is a homolog of calmodulin that regulates cell adhesion, migration, and differentiation. It has been considered as an oncogene in many tumor cells; however, its role in lung adenocarcinoma (LAC) has not been studied. In this study, the expression levels of CIB1 in LAC tissues and adjacent normal tissues were examined by immunohistochemistry, and the relationship between CIB1 expression and patient clinicopathological characteristics was analyzed. The effects of CIB1 on epithelial–mesenchymal transition (EMT), migration, and metastasis of LAC cells were determined in vitro and vivo. Proteins interacting with CIB1 were identified using electrospray mass spectrometry (LS-MS), and CHIP was selected in the following assays. Carboxyl-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin E3 ligase. We show that CHIP can degrade CIB1 via promoting polyubiquitination of CIB1 and its subsequent proteasomal degradation. Besides, lysine residue 10 and 65 of CIB1 is the ubiquitinated site of CIB1. Furthermore, CHIP-mediated CIB1 downregulation is critical for the suppression of metastasis and migration of LAC. These results indicated that CHIP-mediated CIB1 ubiquitination could regulate epithelial–mesenchymal and tumor metastasis in LAC.Subject terms: Metastasis, Oncogenes, Non-small-cell lung cancer  相似文献   

17.
Kallikrein-related peptidase 8 (KLK8) acts as an oncogene or anti-oncogene in various tumours, and the abnormal expression of KLK8 is involved in the carcinogenesis of several tumours. However, the role of KLK8 in colorectal cancer (CRC) and the underlying mechanism remain largely unclear. In this study, the carcinogenic effect of KLK8 was determined via CCK-8 and colony formation assays in vitro and a xenograft model in nude mice in vivo. The metastasis-promoting effect of KLK8 was investigated with transwell migration and invasion assays and wound-healing assay in vitro and a metastasis model in nude mice in vivo. Bioinformatics analyses and mechanistic experiments were conducted to elucidate the molecular mechanism. Herein, we reported that KLK8 had a promotive effect on the proliferation, migration and invasion of RKO and SW480 cells. Epithelial−mesenchymal transition (EMT) played an important role in the promotive effects of KLK8 on CRC. In addition, protease-activated receptor-1 (PAR-1) antagonist SCH79797 but not protease-activated receptor-2 (PAR-2) antagonist FSLLRY-NH2 attenuated the proliferation, migration and invasion of KLK8-upregulated RKO and SW480 cells. PAR-1 antagonist SCH79797 reduced the tumour volume of xenograft model and decreased the metastatic nodules in the livers of metastasis model. Furthermore, SCH79797 could reverse the positive impact of KLK8 on the EMT process in CRC both in vitro and in vivo. Taken together, these findings demonstrated for the first time that KLK8 promoted EMT and CRC progression, and this effect might be, at least partly mediated by PAR1-dependent pathway.Subject terms: Colorectal cancer, Oncogenes, Tumour biomarkers  相似文献   

18.
上皮间质转化(epithelial-mesenchymal transition,EMT)与肿瘤侵袭转移密切相关.虽然肝细胞生长因子(hepatocyte growth factor,HGF)已被证实为肿瘤EMT的主要诱导剂,但是HGF诱导肿瘤EMT发生的分子机制尚不完全清楚.本研究旨在探讨Snail在HGF诱导肝癌细胞上皮间质转化中的作用.用HGF处理肝癌HepG2和Hep3B细胞,显微镜观察细胞形态变化,划痕试验及Transwell试验检测细胞迁移能力,Western印迹检测Met,AKT的磷酸化及蛋白质表达的变化,Western印迹与real-time RT-PCR检测上皮细胞表面标志E-Cadherin和间质细胞表面标志N-Cadherin、Fibronectin的表达变化,以及EMT相关转录因子的表达变化.经HGF处理的HepG2、Hep3B细胞,Met和AKT的磷酸化水平显著增强;相差倒置显微镜下观察细胞形态向间质型细胞形态转化;细胞划痕和Transwell试验检测细胞的迁移能力较对照组显著增强;Real-time RT-PCR和Western印迹实验显示HGF的诱导能上调间质标记蛋白的表达及下调上皮型标志蛋白的表达.进一步发现,HGF能上调转录因子Snail的表达,干扰Snail能逆转HGF对HepG2和Hep 3B细胞EMT发生的诱导作用.由此可见,HGF可能通过诱导Snail的表达促进肝癌细胞EMT的发生.这为阐明肝癌细胞侵袭转移机制,以及肝癌的防治提供新线索.  相似文献   

19.
20.
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion. Subject terms: Cell migration, Lung cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号