首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1Chk2/Rad53 through the Rad3ATR/Mec1-Mrc1Claspin pathway. Hsk1, the Cdc7 homolog of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not significantly in an mcm2 or polε mutant. These results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.Key words: Cdc7, Cdc45, checkpoint, DNA replication, Mrc1  相似文献   

3.
4.
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.  相似文献   

5.
6.
The yeast Chk2/Chk1 homolog Rad53 is a central component of the DNA damage checkpoint system. While it controls genotoxic stress responses such as cell cycle arrest, replication fork stabilization and increase in dNTP pools, little is known about the consequences of reduced Rad53 levels on the various cellular endpoints or about its roles in dealing with chronic vs. acute genotoxic challenges. Using a tetraploid gene dosage model in which only one copy of the yeast RAD53 is functional (simplex), we found that the simplex strain was not sensitive to acute UV radiation or chronic MMS exposure. However, the simplex strain was sensitized to chronic exposure of the ribonucleotide reductase inhibitor hydroxyurea (HU). Surprisingly, reduced RAD53 gene dosage did not affect sensitivity to HU acute exposure, indicating that immediate checkpoint responses and recovery from HU-induced stress were not compromised. Interestingly, cells of most of the colonies that arise after chronic HU exposure acquired heritable resistance to HU. We also found that short HU exposure before and after treatment of G2 cells with ionizing radiation (IR) reduced the capability of RAD53 simplex cells to repair DSBs, in agreement with sensitivity of RAD53 simplex strain to high doses of IR. We propose that a modest reduction in Rad53 activity can impact the activation of the ribonucleotide reductase catalytic subunit Rnr1 following stress, reducing the ability to generate nucleotide pools sufficient for DNA repair and replication. At the same time, reduced Rad53 activity may lead to genome instability and to the acquisition of drug resistance before and/or during the chronic exposure to HU. These results have implications for developing drug enhancers as well as for understanding mechanisms of drug resistance in cells compromised for DNA damage checkpoint.  相似文献   

7.
DNA sequences prone to forming noncanonical structures (hairpins, triplexes, G-quadruplexes) cause DNA replication fork stalling, activate DNA damage responses, and represent hotspots of genomic instability associated with human disease. The 88-bp asymmetric polypurine-polypyrimidine (Pu-Py) mirror repeat tract from the human polycystic kidney disease (PKD1) intron 21 forms non-B DNA secondary structures in vitro. We show that the PKD1 mirror repeat also causes orientation-dependent fork stalling during replication in vitro and in vivo. When integrated alongside the c-myc replicator at an ectopic chromosomal site in the HeLa genome, the Pu-Py mirror repeat tract elicits a polar replication fork barrier. Increased replication protein A (RPA), Rad9, and ataxia telangiectasia- and Rad3-related (ATR) checkpoint protein binding near the mirror repeat sequence suggests that the DNA damage response is activated upon replication fork stalling. Moreover, the proximal c-myc origin of replication was not required to cause orientation-dependent checkpoint activation. Cells expressing the replication fork barrier display constitutive Chk1 phosphorylation and continued growth, i.e. checkpoint adaptation. Excision of the Pu-Py mirror repeat tract abrogates the DNA damage response. Adaptation to Chk1 phosphorylation in cells expressing the replication fork barrier may allow the accumulation of mutations that would otherwise be remediated by the DNA damage response.  相似文献   

8.
Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery.  相似文献   

9.
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1Chk2/Rad53 through the Rad3ATR/Mec1-Mrc1Claspin pathway. Hsk1, the Cdc7 homologue of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not in an mcm2 or polε mutant. The results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.  相似文献   

10.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep, that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3–H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53''s functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53Δ mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins and growth of this mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a “nucleosome buffer”, interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.Key words: DNA replication, Rad53, histones, checkpoint, origins of replication  相似文献   

11.
Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI) proximal to an early replicating centromere (CEN7) in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR) proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP) experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4 in vivo. Thus, the HR proteins Rad51 and Rad52 epigenetically maintain centromere functioning by regulating CENP-ACaCse4 levels at the programmed stall sites of early replicating centromeres.  相似文献   

12.
In asexual (apomictic) plants, the absence of meiosis and sex is expected to lead to mutation accumulation. To compare mutation accumulation in the transcribed genomic regions of sexual and apomictic plants, we performed a double-validated analysis of copy number variation (CNV) on 10 biological replicates each of diploid sexual and diploid apomictic Boechera, using a high-density (>700 K) custom microarray. The Boechera genome demonstrated higher levels of depleted CNV, compared with enriched CNV, irrespective of reproductive mode. Genome-wide patterns of CNV revealed four divergent lineages, three of which contain both sexual and apomictic genotypes. Hence genome-wide CNV reflects at least three independent origins (i.e., expression) of apomixis from different sexual genetic backgrounds. CNV distributions for different families of transposable elements were lineage specific, and the enrichment of LINE/L1 and long term repeat/Copia elements in lineage 3 apomicts is consistent with sex and meiosis being mechanisms for purging genomic parasites. We hypothesize that significant overrepresentation of specific gene ontology classes (e.g., pollen–pistil interaction) in apomicts implies that gene enrichment could be an adaptive mechanism for genome stability in diploid apomicts by providing a polyploid-like system for buffering the effects of deleterious mutations.  相似文献   

13.
Deficiency in DNA ligase I, encoded by CDC9 in budding yeast, leads to the accumulation of unligated Okazaki fragments and triggers PCNA ubiquitination at a non-canonical lysine residue. This signal is crucial to activate the S phase checkpoint, which promotes cell cycle delay. We report here that a pol30-K107 mutation alleviated cell cycle delay in cdc9 mutants, consistent with the idea that the modification of PCNA at K107 affects the rate of DNA synthesis at replication forks. To determine whether PCNA ubiquitination occurred in response to nicks or was triggered by the lack of PCNA-DNA ligase interaction, we complemented cdc9 cells with either wild-type DNA ligase I or a mutant form, which fails to interact with PCNA. Both enzymes reversed PCNA ubiquitination, arguing that the modification is likely an integral part of a novel nick-sensory mechanism and not due to non-specific secondary mutations that could have occurred spontaneously in cdc9 mutants. To further understand how cells cope with the accumulation of nicks during DNA replication, we utilized cdc9-1 in a genome-wide synthetic lethality screen, which identified RAD59 as a strong negative interactor. In comparison to cdc9 single mutants, cdc9 rad59Δ double mutants did not alter PCNA ubiquitination but enhanced phosphorylation of the mediator of the replication checkpoint, Mrc1. Since Mrc1 resides at the replication fork and is phosphorylated in response to fork stalling, these results indicate that Rad59 alleviates nick-induced replication fork slowdown. Thus, we propose that Rad59 promotes fork progression when Okazaki fragment processing is compromised and counteracts PCNA-K107 mediated cell cycle arrest.  相似文献   

14.
15.
Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.  相似文献   

16.
For small-copy-number pUC-type plasmids, the inc1 and inc2 mutations, which deregulate replication, were previously found to increase the plasmid copy number 6- to 7-fold. Because plasmids can exert a growth burden, it was not clear if further amplification of copy number would occur due to inc mutations when the starting point for plasmid copy number was orders of magnitude higher. To investigate further the effects of the inc mutations and the possible limits of plasmid synthesis, the parent plasmid pNTC8485 was used as a starting point. It lacks an antibiotic resistance gene and has a copy number of ∼1,200 per chromosome. During early stationary-phase growth in LB broth at 37°C, inc2 mutants of pNTC8485 exhibited a copy number of ∼7,000 per chromosome. In minimal medium at late log growth, the copy number was found to be significantly increased, to approximately 15,000. In an attempt to further increase the plasmid titer (plasmid mass/culture volume), enzymatic hydrolysis of the selection agent, sucrose, at late log growth extended growth and tripled the total plasmid amount such that an approximately 80-fold gain in total plasmid was obtained compared to the value for typical pUC-type vectors. Finally, when grown in minimal medium, no detectable impact on the exponential growth rate or the fidelity of genomic or plasmid DNA replication was found in cells with deregulated plasmid replication. The use of inc mutations and the sucrose degradation method presents a simplified way for attaining high titers of plasmid DNA for various applications.  相似文献   

17.
The Dbf4/Cdc7 kinase (DDK) plays an essential role in stimulating DNA replication by phosphorylating subunits of the Mcm2-7 helicase complex at origins. This kinase complex is itself phosphorylated and removed from chromatin in a Rad53-dependent manner when an S phase checkpoint is triggered. Comparison of Dbf4 sequence across a variety of eukaryotic species has revealed three conserved regions that have been termed motifs N, M and C. The most highly conserved of the three, motif C, encodes a zinc finger, which are known to mediate protein-protein and protein-DNA interactions. Mutation of conserved motif C cysteines and histidines disrupted the association of Dbf4 with ARS1 origin DNA and Mcm2, but not other known ligands including Cdc7, Rad53 or the origin recognition complex subunit Orc2. Furthermore, these mutations impaired the ability of Dbf4 to phosphorylate Mcm2. Budding yeast strains for which the single genomic DBF4 copy was replaced with these motif C mutant alleles were compromised for entry into and progression through S phase, indicating that the observed weakening of the Mcm2 interaction prevents DDK from efficiently stimulating the initiation of DNA replication. Following initiation, Mcm2-7 migrates with the replication fork. Interestingly, the motif C mutants were sensitive to long-term, but not short-term exposure to the genotoxic agents hydroxyurea and methyl methanesulfonate. These results support a model whereby DDK interaction with Mcm2 is important to stabilize and/or restart replication forks during conditions where a prolonged S-phase checkpoint is triggered.  相似文献   

18.
Potential causes of premature arrest of a replication fork in vivo include an encounter with a chemical lesion in the DNA, inhibition of one of the essential enzymes of the fork, and spontaneous failure of the fork due to its finite degree of processivity. I suggest that a premature arrest of either a eukaryotic or prokaryotic replication fork induces it to enter a different state in which the fork synthesizes a specific signal nucleotide (“alarmone”). One function of the postulated new alarmone would be to increase the probability of re-initiation of DNA replication, either in cis (at an origin proximal to a site of the fork arrest) or in trans (at many different origins). An additional, mechanistically related function of the postulated alarmone could be to increase the probability of re-assembly of an arrested fork beyond an otherwise impassable DNA lesion. In case of multiple fork arrests, an alarmone-mediated increase in the probability of replicon reinitiation (disproportionate DNA replication) would result in gene amplification at many different loci, thereby increasing the probability of cell's survival in a cytotoxic medium. Other likely functions of a fork-produced alarmone may include stimulation of DNA repair pathways including excision repair. I review the experimental evidence which although indirect, is consistent with the idea of a fork-produced alarmone and specifically with the possibility that the postulated alarmone is diadenosine 5', 5′′′P1, P4-tetraphosphate (Ap4A) or a closely related adenylated nucleotide. The proposed hypothesis leads to specific, testable predictions; it also provides a unifying explanation for several hitherto unconnected observations on DNA replication, repair and amplification.  相似文献   

19.
20.
J Welch  S Fogel  C Buchman    M Karin 《The EMBO journal》1989,8(1):255-260
The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned CUP2 by molecular complementation. The smallest subcloned fragment conferring function was approximately 2.1 kb. We show that CUP2, which is on chromosome VII, codes for or controls the synthesis or activity of a protein which binds the upstream control region of the CUP1 gene on chromosome VIII. Mutant cup2 cells produced extremely low levels of CUP1-specific mRNA, with or without added copper ions and lacked a factor which binds to the CUP1 promoter. Integrated at the cup2 site, the CUP2 plasmid restored the basal level and inducibility of CUP1 expression and led to reappearance of the CUP1-promoter binding factor. Taken collectively, our data establish CUP2 as a regulatory gene for expression of the CUP1 metallothionein gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号