首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported on the molecular design and synthesis of a new RNA ligase ribozyme (DSL), whose active site was selected from a sequence library consisting of 30 random nucleotides set on a defined 3D structure of a designed RNA scaffold. In this study, we report on the structural and biochemical analyses of DSL. Structural analysis indicates that the active site, which consists of the selected sequence, attaches to the folded scaffold as designed. To see whether DSL resembles known ribozymes, a biochemical assay was performed. Metal-dependent kinetic studies suggest that the ligase requires Mg2+ ions. The replacement of Mg2+ with Co(NH3)6(3+) prohibits the reaction, indicating that DSL requires innersphere coordination of Mg2+ for a ligation reaction. The results show that DSL has requirements similar to those of previously reported catalytic RNAs.  相似文献   

2.
Huang HB  Chen YC  Lee TT  Huang YC  Liu HT  Liu CK  Tsay HJ  Lin TH 《Proteins》2007,68(3):779-788
Inhibitor-1alpha is one of the isoforms of human protein phosphatase inhibitor-1. It is a product of alternative splicing of inhibitor-1 gene and lacks 51 internal amino acids from residue 84 to 134 of inhibitor-1. Here we have characterized the structural and biochemical properties of inhibitor-1alpha. Structural analysis of recombinant inhibitor-1alpha by NMR spectroscopy revealed that inhibitor-1alpha adopts a predominantly random coil conformation. Excluding the region from residue 84 to 134 of inhibitor-1, the structural features of inhibitor-1 and inhibitor-1alpha are almost the same as each other. The IC(50) value of inhibitor-1alpha in inhibition of Protein phosphatase-1 (PP1) is comparable to that of inhibitor-1, indicating that inhibitor-1alpha is a potent inhibitor of PP1 when Thr-35 is phosphorylated by PKA. For phosphorylation by PKA and dephosphorylation by protein phosphatase-1, -2A, and -2B, the measured kinetic parameters of inhibitor-1alpha are very close to those of inhibitor-1. Taken together, these results suggest that inhibitor-1alpha preserves the structure of inhibitor-1, the PP1 inhibitory activity and the functional specificities toward phosphorylation by PKA and dephosphorylation by protein phosphatase-1, -2A, and -2B.  相似文献   

3.
The vertex of the adenoviral capsid is formed by the penton, a complex of two proteins, the pentameric penton base and the trimeric fiber protein. The penton contains all necessary components for viral attachment and entry into the host cell. After initial attachment via the head domain of the fiber protein, the penton base interacts with cellular integrins through an Arg-Gly-Asp (RGD) motif located in a hypervariable surface loop, triggering virus internalization. In order to investigate the structural and functional role of this region, we replaced the hypervariable loop of serotype 2 with the corresponding, but much shorter, loop of serotype 12 and compared it to the wild type. Here, we report the 3.6 A crystal structure of a human adenovirus 2/12 penton base chimera crystallized as a dodecamer. The structure is generally similar to human adenovirus 2 penton base, with the main differences localized to the fiber protein-binding site. Fluorescence anisotropy assays using a trimeric fiber protein mimetic called the minifiber and wild-type human adenovirus 2 and chimeric penton base demonstrate that fiber protein binding is independent of the hypervariable loop, with a K(d) for fiber binding estimated in the 1-2 microm range. Interestingly, competition assays using labeled and unlabeled minifiber demonstrated virtually irreversible binding to the penton base, which we ascribe to a conformational change, on the basis of comparisons of all available penton base structures.  相似文献   

4.
5.
6.
Two paralogous groups of fatty acid-binding proteins (FABPs) have been described in vertebrate liver: liver FABP (L-FABP) type, extensively characterized in mammals, and liver basic FABP (Lb-FABP) found in fish, amphibians, reptiles, and birds. We describe here the toad Lb-FABP complete amino acid sequence, its X-ray structure to 2.5 A resolution, ligand-binding properties, and mechanism of fatty acid transfer to phospholipid membranes. Alignment of the amino acid sequence of toad Lb-FABP with known L-FABPs and Lb-FABPs shows that it is more closely related to the other Lb-FABPs. Toad Lb-FABP conserves the 12 characteristic residues present in all Lb-FABPs and absent in L-FABPs and presents the canonical fold characteristic of all the members of this protein family. Eight out of the 12 conserved residues point to the lipid-binding cavity of the molecule. In contrast, most of the 25 L-FABP conserved residues are in clusters on the surface of the molecule. The helix-turn-helix motif shows both a negative and positive electrostatic potential surface as in rat L-FABP, and in contrast with the other FABP types. The mechanism of anthroyloxy-labeled fatty acids transfer from Lb-FABP to phospholipid membranes occurs by a diffusion-mediated process, as previously shown for L-FABP, but the rate of transfer is 1 order of magnitude faster. Toad Lb-FABP can bind two cis-parinaric acid molecules but only one trans-parinaric acid molecule while L-FABP binds two molecules of both parinaric acid isomers. Although toad Lb-FABP shares with L-FABP a broad ligand-binding specificity, the relative affinity is different.  相似文献   

7.
8.
9.
Leukotrienes are inflammatory mediators involved in several diseases. The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Little structural information is available regarding 5-lipoxygenase. In this study, we found that the primary structure of the catalytic domain of human 5-lipoxygenase is similar to that of the rabbit 15-lipoxygenase. This similarity allowed the development of a theoretical model of the tertiary structure of the 5-lipoxygenase catalytic domain, using the resolved structure of rabbit 15-lipoxygenase as a template. This model was used in conjunction with primary and secondary structural information to investigate putative nucleotide binding sites, a MAPKAP kinase 2 phosphorylation site, and a Src homology 3 binding site on the 5-lipoxygenase protein, further. Results indicate that the putative nucleotide binding sites are spatially distinct, with one on the -barrel domain and the other(s) on the catalytic domain. The MAPKAP kinase 2 phosphorylation site involves a four amino acid insertion in mammalian 5-lipoxygenases that significantly alters molecular structure. This target for post-translational modification is both common and unique to 5-lipoxygenases. The Src homology 3 binding site, found in all lipoxygenases, appears to lack the characteristic left-handed type II helix structure of known Src homology 3 binding sites. These results, which highlight the unique nature of the MAPKAP kinase site, underscore the utility of structural information in the analysis of protein function. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00894-002-0076-y.Electronic Supplementary Material available.  相似文献   

10.
It was recently discovered that the NRAS isoform 5 (20 amino acids) is expressed in melanoma and results in a more aggressive cell phenotype. This novel isoform is responsible for increased phosphorylation of downstream targets such as AKT, MEK, and ERK as well as increased cellular proliferation. This structure report describes the NMR solution structure of NRAS isoform 5 to be used as a starting point to understand its biophysical interactions. The isoform is highly flexible in aqueous solution, but forms a helix‐turn‐coil structure in the presence of trifluoroethanol as determined by NMR and CD spectroscopy.  相似文献   

11.
Suharti S  Murakami KS  de Vries S  Ferry JG 《Biochemistry》2008,47(44):11528-11535
Flavoredoxin is a FMN-containing electron transfer protein that functions in the energy-yielding metabolism of Desulfovibrio gigas of the Bacteria domain. Although characterization of this flavoredoxin is the only one reported, a database search revealed homologues widely distributed in both the Bacteria and Archaea domains that define a novel family. To improve our understanding of this family, a flavoredoxin from Methanosarcina acetivorans of the Archaea domain was produced in Escherichia coli and biochemically characterized, and a high-resolution crystal structure was determined. The protein was shown to be a homodimer with a subunit molecular mass of 21 kDa containing one noncovalently bound FMN per monomer. Redox titration showed an E(m) of -271 mV with two electrons, consistent with no semiquinone observed in the potential range studied, a result suggesting the flavoredoxin functions as a two-electron carrier. However, neither of the obligate two-electron carriers, NAD(P)H and coenzyme F420H2, was a competent electron donor, whereas 2[4Fe-4S] ferredoxin reduced the flavoredoxin. The X-ray crystal structure determined at 2.05 A resolution revealed a homodimer containing one FMN per monomer, consistent with the biochemical characterization. The isoalloxazine ring of FMN was shown buried within a narrow groove approximately 10 A from the positively charged protein surface that possibly facilitates interaction with the negatively charged ferredoxin. The structure provides a basis for predicting the mechanism by which electrons are transferred between ferredoxin and FMN. The FMN is bound with hydrogen bonds to the isoalloxazine ring and electrostatic interactions with the phosphate moiety that, together with sequence analyses of homologues, indicate a novel FMN binding motif for the flavoredoxin family.  相似文献   

12.
Plasmodium falciparum possesses a single mitochondrion with a functional electron transport chain. During respiration, reactive oxygen species are generated that need to be removed to protect the organelle from oxidative damage. In the absence of catalase and glutathione peroxidase, the parasites rely primarily on peroxiredoxin-linked systems for protection. We have analysed the biochemical and structural features of the mitochondrial peroxiredoxin and thioredoxin of P. falciparum. The mitochondrial localization of both proteins was confirmed by expressing green fluorescent protein fusions in parasite erythrocytic stages. Recombinant protein was kinetically characterized using the cytosolic and the mitochondrial thioredoxin (PfTrx1 and PfTrx2 respectively). The peroxiredoxin clearly preferred PfTrx2 to PfTrx1 as a reducing partner, reflected by the KM values of 11.6 microM and 130.4 microM respectively. Substitution of the two dyads asparagine-62/tyrosine-63 and phenylalanine-139/alanine-140 residues by aspartate-phenylalaine and valine-serine, respectively, reduced the KM for Trx1 but had no effect on the KM of Trx2 suggesting some role for these residues in the discrimination between the two substrates. Solution studies suggest that the protein exists primarily in a homodecameric form. The crystal structure of the mitochondrial peroxiredoxin reveals a fold typical of the 2-Cys class peroxiredoxins and a dimeric form with an intermolecular disulphide bridge between Cys67 and Cys187. These results show that the mitochondrial peroxiredoxin of P. falciparum occurs in both dimeric and decameric forms when purified under non-reducing conditions.  相似文献   

13.
The exosome is a protein complex that is important in both degradation and 3'-processing of eukaryotic RNAs. We present the crystal structure of the Rrp40 exosome subunit from Saccharomyces cerevisiae at a resolution of 2.2 A. The structure comprises an S1 domain and an unusual KH (K homology) domain. Close packing of the S1 and KH domains is stabilized by a GxNG sequence, which is uniquely conserved in exosome KH domains. Nuclear magnetic resonance data reveal the presence of a manganese-binding site at the interface of the two domains. Isothermal titration calorimetry shows that Rrp40 and archaeal Rrp4 alone have very low intrinsic affinity for RNA. The affinity of an archaeal core exosome for RNA is significantly increased in the presence of the S1-KH subunit Rrp4, indicating that multiple subunits might contribute to cooperative binding of RNA substrates by the exosome.  相似文献   

14.
Activation of the proenzyme form of the malarial protease PfSUB-1 involves the autocatalytic cleavage of an Asp-Asn bond within the internal sequence motif (215)LVSADNIDIS(224). A synthetic decapeptide based on this sequence but with the N- and C-terminal residues replaced by cysteines (Ac-CVSADNIDIC-OH) was labeled with 5- or 6-isomers of iodoacetamidotetramethylrhodamine (IATR). The doubly labeled peptides have low fluorescence because of ground-state, noncovalent dimerization of the rhodamines. Cleavage of either peptide by recombinant PfSUB-1 results in dissociation of the rhodamine dimers, which abolishes the self-quenching and consequently leads to an approximately 30-fold increase in the fluorescence. This spectroscopic signal provides a continuous assay of proteolysis, enabling quantitative kinetic measurements to be made, and has also enabled the development of a fluorescence-based assay suitable for use in high-throughput screens for inhibitors of PfSUB-1. The structure of the rhodamine dimer in the 6-IATR-labeled peptide was shown by NMR to be a face-to-face stacking of the xanthene rings. Time-resolved fluorescence measurements suggest that the doubly labeled peptides exist in an equilibrium consisting of rhodamines involved in dimers (closed forms) and rhodamines not involved in dimers (open forms). These data also indicate that the rhodamine dimers fluoresce and that the associated lifetimes are subnanosecond.  相似文献   

15.
Rrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3′ processing of RNA during RNA turnover and surveillance. The Rrp46 homolog, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis in Caenorhabditis elegans. Here we report the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.9 Å and 2.0 Å, respectively. We found that recombinant human Rrp46 (hRrp46), oRrp46, and CRN-5 are homodimers, and that endogenous hRrp46 and oRrp46 also form homodimers in a cellular environment, in addition to their association with a protein complex. Dimeric oRrp46 had both phosphorolytic RNase and hydrolytic DNase activities, whereas hRrp46 and CRN-5 bound to DNA without detectable nuclease activity. Site-directed mutagenesis in oRrp46 abolished either its DNase (E160Q) or RNase (K75E/Q76E) activities, confirming the critical importance of these residues in catalysis or substrate binding. Moreover, CRN-5 directly interacted with the apoptotic nuclease CRN-4 and enhanced the DNase activity of CRN-4, suggesting that CRN-5 cooperates with CRN-4 in apoptotic DNA degradation. Taken together all these results strongly suggest that Rrp46 forms a homodimer separately from exosome complexes and, depending on species, is either a structural or catalytic component of the machinery that cleaves DNA during apoptosis.  相似文献   

16.
To this day, a significant proportion of the human genome remains devoid of functional characterization. In this study, we present evidence that the previously functionally uncharacterized product of the human DHRS10 gene is endowed with 17beta-HSD (17beta-hydroxysteroid dehydrogenase) activity. 17beta-HSD enzymes are primarily involved in the metabolism of steroids at the C-17 position and also of other substrates such as fatty acids, prostaglandins and xenobiotics. In vitro, DHRS10 converts NAD+ into NADH in the presence of oestradiol, testosterone and 5-androstene-3beta,17beta-diol. Furthermore, the product of oestradiol oxidation, oestrone, was identified in intact cells transfected with a construct plasmid encoding the DHRS10 protein. In situ fluorescence hybridization studies have revealed the cytoplasmic localization of DHRS10. Along with tissue expression data, this suggests a role for DHRS10 in the local inactivation of steroids in the central nervous system and placenta. The crystal structure of the DHRS10 apoenzyme exhibits secondary structure of the SDR (short-chain dehydrogenase/reductase) family: a Rossmann-fold with variable loops surrounding the active site. It also reveals a broad and deep active site cleft into which NAD+ and oestradiol can be docked in a catalytically competent orientation.  相似文献   

17.
18.
The DNA sequence of a 2,100-bp region containing the argE gene from Escherichia coli has been determined. The nucleotide sequence of the ppc-argE intergenic region was also solved and shown to contain six tandemly repeated REP sequences. Moreover, the oxyR gene has been mapped on the E. coli chromosome and shown to flank the arg operon. The codon responsible for the translation start of argE was determined by using site-directed mutants. This gene spans 1,400 bp and encodes a 42,350-Da polypeptide. The argE3 allele and a widely used argE amber gene have also been cloned and sequenced. N-Acetylornithinase, the argE product, has been overproduced and purified to homogeneity. Its main biochemical and catalytic properties are described. Moreover, we demonstrate that the protein is composed of two identical subunits. Finally, the amino acid sequence of N-acetylornithinase is shown to display a high degree of identity with those of the succinyldiaminopimelate desuccinylase from E. coli and carboxypeptidase G2 from a Pseudomonas sp. It is proposed that this carboxypeptidase might be responsible for the acetylornithinase-related activity found in the Pseudomonas sp.  相似文献   

19.
We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides a structural basis for further engineering of residues that could result in a better therapeutic molecule.  相似文献   

20.
DsbA is an enzyme found in the periplasm of Gram-negative bacteria that catalyzes the formation of disulfide bonds in a diverse array of protein substrates, many of which are involved in bacterial pathogenesis. Although most bacteria possess only a single essential DsbA, Neisseria meningitidis is unusual in that it possesses three DsbAs, although the reason for this additional redundancy is unclear. Two of these N. meningitidis enzymes (NmDsbA1 and NmDsbA2) play an important role in meningococcal attachment to human epithelial cells, whereas NmDsbA3 is considered to have a narrow substrate repertoire. To begin to address the role of DsbAs in the pathogenesis of N. meningitidis, we have determined the structure of NmDsbA3 to 2.3-A resolution. Although the sequence identity between NmDsbA3 and other DsbAs is low, the NmDsbA3 structure adopted a DsbA-like fold. Consistent with this finding, we demonstrated that NmDsbA3 acts as a thiol-disulfide oxidoreductase in vitro and is reoxidized by Escherichia coli DsbB (EcDsbB). However, pronounced differences in the structures between DsbA3 and EcDsbA, which are clustered around the active site of the enzyme, suggested a structural basis for the unusual substrate specificity that is observed for NmDsbA3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号