首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myofibril assembly and disassembly are complex processes that regulate overall muscle mass. Titin kinase has been implicated as an initiating catalyst in signaling pathways that ultimately result in myofibril growth. In titin, the kinase domain is in an ideal position to sense mechanical strain that occurs during muscle activity. The enzyme is negatively regulated by intramolecular interactions occurring between the kinase catalytic core and autoinhibitory/regulatory region. Molecular dynamics simulations suggest that human titin kinase acts as a force sensor. However, the precise mechanism(s) resulting in the conformational changes that relieve the kinase of this autoinhibition are unknown. Here we measured the mechanical properties of the kinase domain and flanking Ig/Fn domains of the Caenorhabditis elegans titin-like proteins twitchin and TTN-1 using single-molecule atomic force microscopy. Our results show that these kinase domains have significant mechanical resistance, unfolding at forces similar to those for Ig/Fn β-sandwich domains (30-150 pN). Further, our atomic force microscopy data is consistent with molecular dynamic simulations, which show that these kinases unfold in a stepwise fashion, first an unwinding of the autoinhibitory region, followed by a two-step unfolding of the catalytic core. These data support the hypothesis that titin kinase may function as an effective force sensor.  相似文献   

2.
Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin’s globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin) domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme’s ATP-binding site and hence contributing to the molecule’s mechanosensory function.  相似文献   

3.
4.
Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule''s length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.  相似文献   

5.
Striated muscle tissues undergo adaptive remodelling in response to mechanical load. This process involves the myofilament titin and, specifically, its kinase domain (TK; titin kinase) that translates mechanical signals into regulatory pathways of gene expression in the myofibril. TK mechanosensing appears mediated by a C-terminal regulatory tail (CRD) that sterically inhibits its active site. Allegedly, stretch-induced unfolding of this tail during muscle function releases TK inhibition and leads to its catalytic activation. However, the cellular pathway of TK is poorly understood and substrates proposed to date remain controversial. TK''s best-established substrate is Tcap, a small structural protein of the Z-disc believed to link TK to myofibrillogenesis. Here, we show that TK is a pseudokinase with undetectable levels of catalysis and, therefore, that Tcap is not its substrate. Inactivity is the result of two atypical residues in TK''s active site, M34 and E147, that do not appear compatible with canonical kinase patterns. While not mediating stretch-dependent phospho-transfers, TK binds the E3 ubiquitin ligase MuRF1 that promotes sarcomeric ubiquitination in a stress-induced manner. Given previous evidence of MuRF2 interaction, we propose that the cellular role of TK is to act as a conformationally regulated scaffold that functionally couples the ubiquitin ligases MuRF1 and MuRF2, thereby coordinating muscle-specific ubiquitination pathways and myofibril trophicity. Finally, we suggest that an evolutionary dichotomy of kinases/pseudokinases has occurred in TK-like kinases, where invertebrate members are active enzymes but vertebrate counterparts perform their signalling function as pseudokinase scaffolds.  相似文献   

6.
Titin is a giant polypeptide that spans half of the striated muscle sarcomere and generates passive force upon stretch. To explore the elastic response and structure of single molecules and oligomers of titin, we carried out molecular force spectroscopy and atomic force microscopy (AFM) on purified full-length skeletal-muscle titin. From the force data, apparent persistence lengths as long as approximately 1.5 nm were obtained for the single, unfolded titin molecule. Furthermore, data suggest that titin molecules may globally associate into oligomers which mechanically behave as independent wormlike chains (WLCs). Consistent with this, AFM of surface-adsorbed titin molecules revealed the presence of oligomers. Although oligomers may form globally via head-to-head association of titin, the constituent molecules otherwise appear independent from each other along their contour. Based on the global association but local independence of titin molecules, we discuss a mechanical model of the sarcomere in which titin molecules with different contour lengths, corresponding to different isoforms, are held in a lattice. The net force response of aligned titin molecules is determined by the persistence length of the tandemly arranged, different WLC components of the individual molecules, the ratio of their overall contour lengths, and by domain unfolding events. Biased domain unfolding in mechanically selected constituent molecules may serve as a compensatory mechanism for contour- and persistence-length differences. Variation in the ratio and contour length of the component chains may provide mechanisms for the fine-tuning of the sarcomeric passive force response.  相似文献   

7.
Titin is a giant polypeptide that spans half of the striated muscle sarcomere and generates passive force upon stretch. To explore the elastic response and structure of single molecules and oligomers of titin, we carried out molecular force spectroscopy and atomic force microscopy (AFM) on purified full-length skeletal-muscle titin. From the force data, apparent persistence lengths as long as ∼1.5 nm were obtained for the single, unfolded titin molecule. Furthermore, data suggest that titin molecules may globally associate into oligomers which mechanically behave as independent wormlike chains (WLCs). Consistent with this, AFM of surface-adsorbed titin molecules revealed the presence of oligomers. Although oligomers may form globally via head-to-head association of titin, the constituent molecules otherwise appear independent from each other along their contour. Based on the global association but local independence of titin molecules, we discuss a mechanical model of the sarcomere in which titin molecules with different contour lengths, corresponding to different isoforms, are held in a lattice. The net force response of aligned titin molecules is determined by the persistence length of the tandemly arranged, different WLC components of the individual molecules, the ratio of their overall contour lengths, and by domain unfolding events. Biased domain unfolding in mechanically selected constituent molecules may serve as a compensatory mechanism for contour- and persistence-length differences. Variation in the ratio and contour length of the component chains may provide mechanisms for the fine-tuning of the sarcomeric passive force response.  相似文献   

8.
Among numerous protein kinases found in mammalian cell systems there is a distinct subfamily of serine/threonine kinases that are regulated by calmodulin or other related activators in a calcium concentration dependent manner. Members of this family are involved in various cellular processes like cell proliferation and death, cell motility and metabolic pathways. In this contribution we shall review the available structural biology data on five members of this kinase family (calcium/calmodulin dependent kinase, twitchin kinase, titin kinase, phosphorylase kinase, myosin light chain kinase). As a common element, all these kinases contain a regulatory tail, which is C-terminal to their catalytic domain. The available 3D structures of two members, the serine/threonine kinases of the giant muscle proteins twitchin and titin in the autoinhibited conformation, show how this regulatory tail blocks their active sites. The structures suggest that activation of these kinases requires unblocking the active site from the C-terminal extension and conformational rearrangement of the active site loops. Small angle scattering data for myosin light chain kinase indicate a complete release of the C-terminal extension upon calcium/calmodulin binding. In addition, members of this family are regulated by diverse add-on mechanisms, including phosphorylation of residues within the activation segment or the P+1 loop as well as by additional regulatory subunits. The available structural data lead to the hypothesis of two different activation mechanisms upon binding to calcium sensitive proteins. In one model, the regulatory tail is entirely released ("fall-apart"). The alternative model ("looping-out") proposes a two-anchored release mechanism.  相似文献   

9.
Titin: a molecular control freak.   总被引:7,自引:0,他引:7  
Recent studies of the giant protein titin have shed light on its roles in muscle assembly and elasticity and include the surprising findings described here. We now know that the titin kinase domain, which has long been a puzzle, has a novel regulation mechanism. A substrate, telethonin, has been identified that is located over one micron away from the kinase domain in mature muscle. Single-molecule studies have demonstrated the fascinating process of reversible mechanical unfolding of titin. Lastly, and most surprisingly, it has been claimed that titin controls assembly and elasticity in chromosomes.  相似文献   

10.
Steered molecular dynamics studies of titin I1 domain unfolding   总被引:3,自引:0,他引:3       下载免费PDF全文
The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band modules have been restricted to I27, the only structurally known Ig domain from the distal region of the titin I-band. In this paper we report SMD simulations unfolding I1, the first structurally available Ig domain from the proximal region of the titin I-band. The simulations are carried out with a view toward upcoming atomic force microscopy experiments. Both constant velocity and constant force stretching have been employed to model mechanical unfolding of oxidized I1, which has a disulfide bond bridging beta-strands C and E, as well as reduced I1, in which the disulfide bridge is absent. The simulations reveal that I1 is protected against external stress mainly through six interstrand hydrogen bonds between its A and B beta-strands. The disulfide bond enhances the mechanical stability of oxidized I1 domains by restricting the rupture of backbone hydrogen bonds between the A'- and G-strands. The disulfide bond also limits the maximum extension of I1 to approximately 220 A. Comparison of the unfolding pathways of I1 and I27 are provided and implications to AFM experiments are discussed.  相似文献   

11.
Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.  相似文献   

12.
M Rief  M Gautel  A Schemmel    H E Gaub 《Biophysical journal》1998,75(6):3008-3014
The domains of the giant muscle protein titin (connectin) provide interaction sites for other sarcomeric proteins and fulfill mechanical functions. In this paper we compare the unfolding forces of defined regions of different titin isoforms by single-molecule force spectroscopy. Constructs comprising six to eight immunoglobulin (Ig) domains located in the mechanically active I-band part of titin are compared to those containing fibronectin III (Fn3) and Ig domains from the A-band part. The high spatial resolution of the atomic force microscope allows us to detect differences in length as low as a few amino acids. Thus constructs of different lengths may be used as molecular rulers for structural comparisons with other modular proteins. The unfolding forces range between 150 and 300 pN and differ systematically between the constructs. Fn3 domains in titin exhibit 20% lower unfolding forces than Ig domains. Fn3 domains from tenascin, however, unfold at forces only half those of titin Fn3 domains. This indicates that the tightly folded titin domains are designed to maintain their structural integrity, even under the influence of stretching forces. Hence, at physiological forces, unfolding is unlikely unless the forces are applied for a long time (longer than minutes).  相似文献   

13.
Single molecule measurements of titin elasticity   总被引:3,自引:0,他引:3  
Titin, with a massive single chain of 3--4MDa and multiple modular motifs, spans the half-sarcomere of skeletal and cardiac muscles and serves important, multifaceted functions. In recent years, titin has become a favored subject of single molecule observations by atomic force microscopy (AFM) and laser optical trap (LOT). Here we review these single titin molecule extension studies with an emphasis on understanding their relevance to titin elasticity in muscle function. Some fundamental aspects of the methods for single titin molecule investigations, including the application of dynamic force, the elasticity models for filamentous titin motifs, the technical foundations and calibrations of AFM and LOT, and titin sample preparations are provided. A chronological review of major publications on recent single titin extension observations is presented. This is followed by summary evaluations of titin domain folding/unfolding results and of elastic properties of filamentous titin motifs. Implications of these single titin measurements for muscle physiology/pathology are discussed and forthcoming advances in single titin studies are anticipated.  相似文献   

14.
Titin is a structural protein in muscle that spans the half sarcomere from Z-band to M-line. Although there are selected studies on titin's mechanical properties from tests on isolated molecules or titin fragments, little is known about its behavior within the structural confines of a sarcomere. Here, we tested the hypothesis that titin properties might be reflected well in single myofibrils. Single myofibrils from rabbit psoas were prepared for measurement of passive stretch-shortening cycles at lengths where passive titin forces occur. Three repeat stretch-shortening cycles with magnitudes between 1.0 and 3.0μm/sarcomere were performed at a speed of 0.1μm/s·sarcomere and repeated after a ten minute rest at zero force. These tests were performed in a relaxation solution (passive) and an activation solution (active) where cross-bridge attachment was inhibited with 2,3 butanedionemonoxime. Myofibrils behaved viscoelastically producing an increased efficiency with repeat stretch-shortening cycles, but a decreased efficiency with increasing stretch magnitudes. Furthermore, we observed a first distinct inflection point in the force-elongation curve at an average sarcomere length of 3.5μm that was associated with an average force of 68±5nN/mm. This inflection point was thought to reflect the onset of Ig domain unfolding and was missing after a ten minute rest at zero force, suggesting a lack of spontaneous Ig domain refolding. These passive myofibrillar properties observed here are consistent with those observed in isolated titin molecules, suggesting that the mechanics of titin are well preserved in isolated myofibrils, and thus, can be studied readily in myofibrils, rather than in the extremely difficult and labile single titin preparations.  相似文献   

15.
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.  相似文献   

16.
Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of the titin segments in skeletal muscle has been determined by immunofluorescence/immunoelectron microscopy of sarcomeres stained with sequence-assigned titin antibodies. The force developed upon stretch of titin has been measured on isolated molecules or recombinant titin fragments with the help of optical tweezers and the atomic force microscope. Force has also been measured in single isolated myofibrils. The force-extension relation of titin could be readily fitted with models of biopolymer elasticity. For physiologically relevant extensions, the elasticity of the titin segments was largely explainable by an entropic-spring mechanism. The modelling explains why during stretch of titin, the Ig-domain regions (with folded modules) extend before the PEVK domain. In cardiac muscle, I-band titin is expressed in different isoforms, termed N2-A and N2-B. The N2-A isoform resembles that of skeletal muscle, whereas N2-B titin is shorter and is distinguished by cardiac-specific Ig-motifs and nonmodular sequences within the central I-band section. Examination of N2-B titin extensibility revealed that this isoform extends by recruiting three distinct elastic elements: poly-Ig regions and the PEVK domain at lower stretch and, in addition, a unique 572-residue sequence insertion at higher physiological stretch. Extension of all three elements allows cardiac titin to stretch fully reversibly at physiological sarcomere lengths, without the need to unfold individual Ig domains. However, unfolding of a very small number of Ig domains remains a possibility.  相似文献   

17.
Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.  相似文献   

18.
Although recent research emphasises the possible role of titin in skeletal muscle force enhancement, this property is commonly ignored in current computational models. This work presents the first biophysically based continuum-mechanical model of skeletal muscle that considers, in addition to actin–myosin interactions, force enhancement based on actin–titin interactions. During activation, titin attaches to actin filaments, which results in a significant reduction in titin’s free molecular spring length and therefore results in increased titin forces during a subsequent stretch. The mechanical behaviour of titin is included on the microscopic half-sarcomere level of a multi-scale chemo-electro-mechanical muscle model, which is based on the classic sliding-filament and cross-bridge theories. In addition to titin stress contributions in the muscle fibre direction, the continuum-mechanical constitutive relation accounts for geometrically motivated, titin-induced stresses acting in the muscle’s cross-fibre directions. Representative simulations of active stretches under maximal and submaximal activation levels predict realistic magnitudes of force enhancement in fibre direction. For example, stretching the model by 20 % from optimal length increased the isometric force at the target length by about 30 %. Predicted titin-induced stresses in the muscle’s cross-fibre directions are rather insignificant. Including the presented development in future continuum-mechanical models of muscle function in dynamic situations will lead to more accurate model predictions during and after lengthening contractions.  相似文献   

19.
The elastic section of the giant muscle protein titin contains many immunoglobulin-like domains, which have been shown by single-molecule mechanical studies to unfold and refold upon stretch-release. Here we asked whether the mechanical properties of Ig domains and/or other titin regions could be responsible for the viscoelasticity of nonactivated skeletal-muscle sarcomeres, particularly for stress relaxation and force hysteresis. We show that isolated psoas myofibrils respond to a stretch-hold protocol with a characteristic force decay that becomes more pronounced following stretch to above 2.6-microm sarcomere length. The force decay was readily reproducible by a Monte Carlo simulation taking into account both the kinetics of Ig-domain unfolding and the worm-like-chain model of entropic elasticity used to describe titin's elastic behavior. The modeling indicated that the force decay is explainable by the unfolding of only a very small number of Ig domains per titin molecule. The simulation also predicted that a unique sequence in titin, the PEVK domain, may undergo minor structural changes during sarcomere extension. Myofibrils subjected to 1-Hz cycles of stretch-release exhibited distinct hysteresis that persisted during repetitive measurements. Quick stretch-release protocols, in which variable pauses were introduced after the release, revealed a two-exponential time course of hysteresis recovery. The rate constants of recovery compared well with the refolding rates of Ig-like or fibronectin-like domains measured by single-protein mechanical analysis. These findings suggest that in the sarcomere, titin's Ig-domain regions may act as entropic springs capable of adjusting their contour length in response to a stretch.  相似文献   

20.
Polycystin-1 is a large membrane-associated protein that interacts with polycystin-2 in the primary cilia of renal epithelial cells to form a mechanosensitive ion channel. Bending of the cilia induces calcium flow into the cells, mediated by the polycystin complex. Antibodies to polycystin-1 and polycystin-2 abolish this activation. Based on this, it has been suggested that the extracellular region of polycystin-1, which has a number of putative binding domains, may act as a mechanosensor. A large proportion of the extracellular region of polycystin-1 consists of beta-sandwich PKD domains in tandem array. We use atomic force microscopy to investigate the mechanical properties of the PKD domains of polycystin-1. We show that these domains, despite having a low thermodynamic stability, exhibit a remarkable mechanical strength, similar to that of immunoglobulin domains in the giant muscle protein titin. In agreement with the experimental results molecular dynamics simulations performed at low constant force show that the first PKD domain of polycystin (PKDd1) has a similar unfolding time as titin I27, under the same conditions. The simulations suggest that the basis for this mechanical stability is the formation of a force-stabilised intermediate. Our results suggest that these domains will remain folded under external force supporting the hypothesis that polycystin-1 could act as a mechanosensor, detecting changes in fluid flow in the kidney tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号