首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have examined alpha-smooth muscle actin (alpha-SM actin) protein and mRNA levels in proliferating and density-arrested rabbit vascular smooth muscle cells (SMC) and also studied overall polypeptide synthesis in these cells by two-dimensional (2-D) gel electrophoresis. Of the approximately 1,000 cellular polypeptides resolved by 2-D gel analysis, we consistently detected increased expression of 12 polypeptides in growth-arrested SMC. These polypeptides, with apparent molecular weights of 24,000 to 55,000 exhibited relative increases of between fourfold to greater than tenfold. Three of these polypeptides were expressed at undetectable levels in proliferating SMC. We also detected 12 secreted polypeptides that were expressed at higher levels in growth-arrested SMC. More changes were associated with the secreted polypeptides, since they represented approximately 4% of the total resolved secreted polypeptides, while only 1% of the cellular polypeptides were increased in high-density growth-arrested cells. Under these conditions we observed no change in relative alpha-SM actin protein content as determined by 2-D gel analysis and Western blots. This was corroborated by high levels of alpha-SM actin mRNA levels in both proliferating and high-density growth-arrested SMC. These results indicate rabbit vascular SMC maintain a high level of expression of a smooth muscle differentiation marker (alpha-SM actin) in a proliferation- and density-independent manner. We also examined polypeptide synthesis in SMC isolated by enzymatic digestion of the aorta vs. cells isolated by the explant method. We found that although overall protein patterns were remarkably similar, several differences were observed. These differences were not due to increased contamination by fibroblasts, since both enzymatically- and explant-derived SMC contained high levels of alpha-SM actin as determined by immunofluorescence and by Northern analysis.  相似文献   

5.
Previous work from our laboratory has shown that heparin specifically induces the release of a pair of proteins of approximately 35,000 and 37,000 Da into the culture medium of vascular smooth muscle cells (SMC). In this report, we demonstrate that the previously identified 37,000-Da smooth muscle protein is composed of two protein species with very similar molecular weights based on migration patterns in SDS-polyacrylamide gels. The larger molecular weight species in this doublet has a similar molecular weight and shares antigenic determinants with major excreted protein (MEP), a lysosomal proteinase previously shown to be secreted by normal and transformed fibroblasts and epidermal cells. Antisera to MEP precipitated the higher molecular weight band from the doublet; preimmune serum was not reactive with the smooth muscle protein. Exposure of smooth muscle cells to heparin resulted in decreased amounts of immunoprecipitable protein released into the medium. Thus, it now appears that three proteins in the 35,000-38,000 molecular weight range are modulated by heparin, and that the largest of the heparin-modulated vascular SMC proteins has a similar molecular weight and is immunologically related to MEP. The release of MEP-like protein from SMC is decreased by heparin, while the remaining two heparin-modulated proteins are increased in the presence of heparin.  相似文献   

6.
Collagen synthesis and procollagen mRNA levels were determined and compared in (1) sparse, rapidly proliferating smooth muscle cells (SMC); (2) postconfluent, density-arrested SMC; and (3) sparse, nonproliferating (mitogen-deprived) rabbit arterial SMC. Collagen synthesis per SMC was decreased by 70% in postconfluent versus proliferating cells. However, relative collagen synthesis, expressed as the percentage of total protein synthesis, increased from 3.7% in sparse cultures to approximately 7% in postconfluent cultures. Slot blot analyses demonstrated that the relative steady state alpha 1(I) and alpha 1(III) procollagen mRNA levels were also increased in postconfluent cultures when compared to sparse cultures. As with collagen synthesis per cell, the mRNA levels per cell for types I and III procollagen in postconfluent cells, determined by densitometry of blots, were likewise approximately half that found in sparse, proliferating cells. In a separate study to determine if cell-cell contact was necessary for eliciting these changes in collagen synthesis, we determined collagen synthesis in mitogen-deprived and proliferating SMC cultures at low density. Mitogen-deprived cultures synthesized only 10% the amount of collagen produced (per cell) by proliferating cultures in 10% fetal bovine serum. Relative collagen synthesis in proliferating and nonproliferating cultures was 5.0 and 8.3%, respectively. These results demonstrate elevated collagen synthesis, per cell, by proliferating cultures compared with nonproliferating cultures, regardless of whether cells were rendered quiescent by density arrest or by mitogen deprivation. Results also suggest a pretranslational mechanism for the regulation of collagen synthesis in rabbit aortic smooth muscle cells.  相似文献   

7.
Apolipoprotein synthesis was measured in control optic nerves and optic nerves undergoing Wallerian degeneration. After short term organ culture with radiolabeled amino acid, optic nerve extracts were reacted with antiserum to rat or chicken apolipoproteins. Immunoprecipitates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the degenerating rat optic nerve, apo-E synthesis increased from 0.30 to 0.90% of newly synthesized protein and from 0.45 to 1.4% of secreted protein. A DNA-excess solution hybridization assay was constructed to measure the absolute amount of apo-E mRNA in control and degenerating optic nerves. Paralleling the increase in apo-E protein synthesis, the absolute amount of apo-E mRNA was elevated 3- to 4-fold after enucleation. Similar to rat apo-E, apo-A-I synthesis was increased in degenerating chicken optic nerve. Chicken apo-A-I represented 0.65 and 3.5% of newly synthesized protein from control and enucleated optic nerves, respectively. Apo-A-I increased from 0.85 to 5.5% of secreted protein following enucleation. Using in vitro translation to quantitate relative amounts of chicken apo-A-I mRNA, enucleated optic nerve apo-A-I mRNA content was increased 5-fold. These results suggest that local apolipoprotein synthesis may be involved in the mobilization of myelin cholesterol which occurs during Wallerian degeneration. The similar response of the rat and chicken to increase optic nerve apolipoprotein synthesis during degeneration supports the idea that avian peripheral apo-A-I and mammalian peripheral apo-E may be performing functions common to both classes of animals.  相似文献   

8.
Abstract: Apolipoprotein synthesis and secretion is upregulated in wallerian degenerating peripheral nerves. A commonly expressed view has been that macrophages are solely responsible for their production. In the present study we provide evidence that (1) nerve-derived fibroblasts contribute to apolipoprotein production, (2) apolipoprotein production is confined to regions where myelin destruction and phagocytosis occur, and (3) some experimental procedures are detrimental for the production of apolipoproteins. Apolipoprotein production was studied in C57BL/6/NHSD (N) and C57/BL/6-WLD/OLA/NHSD (W) mice that display, respectively, rapid and slow progression of wallerian degeneration. In N nerves, apolipoprotein E (apo-E) is produced during in vitro and in vivo degeneration, and in vivo after freeze damage. In W nerves, apo-E is produced at the injury region where degeneration occurs but not farther distally where degeneration fails to develop. Apo-E is also produced in W nerves during in vitro degeneration and in vivo after freeze damage. In culture, N and W mice nerve-derived fibroblasts, but neither macrophages nor Schwann cells produced apo-E. Two apolipoproteins are produced in in vivo wallerian degenerating and freeze-damaged frog nerves, i.e., apo-39 and apo-29. Only apo-39 is produced in in vitro degenerating nerves. Neither apo-39 nor apo-29 is produced during in vivo degeneration in diffusion chambers. In culture, apo-39 is produced by nerve-derived fibroblasts and macrophages but not by Schwann cells.  相似文献   

9.
A sensitive DNA-excess solution hybridization assay was used to quantitate apo-E mRNA in the liver and peripheral tissues of two nonhuman primates, Macaca fascicularis and Cercopithecus aethiops. When expressed on the basis of total RNA, apo-E mRNA values for M. fascicularis adrenal, brain, testis, and spleen ranged from 17-52% of the liver value. Apo-E mRNA values for mesenteric lymph node, kidney, thymus, and skeletal muscle were 1-5% of the liver value. When expressed on a cellular basis, apo-E mRNA was most abundant in the liver at approximately 1200 molecules/cell. Peripheral tissues showed a continuous range of apo-E mRNA from 1.5 molecules/cell in the thymus up to 350 molecules/cell in the brain. Similar results were obtained with peripheral tissues from C. aethiops in which case apo-E mRNA also was found in skin, lung, skeletal muscle, small intestine, and vascular tissues such as heart, aorta, and brachial artery. Calculation of the total apo-E mRNA/organ showed that most of the apo-E mRNA was present in the liver. However, summation of apo-E mRNA in peripheral tissues indicated that 20-40% of total body apo-E mRNA was extrahepatic. This results indicates that apo-E made in peripheral tissues may play a quantitatively important role in cholesterol metabolism since peripheral tissues have the potential to contribute a significant fraction of plasma apo-E.  相似文献   

10.
We have examined the ability of transforming growth factor-beta 1 (TGF-beta 1) and platelet-derived growth factor-BB (PDGF-BB) to regulate the expression of various integrins in cultured rabbit vascular smooth muscle cells (SMC). We found that expression of the alpha v beta 3 integrin complex was induced by both growth factors, although TGF-beta 1 appeared to be the more potent inducer. mRNA level of the beta 3 integrin subunit was undetectable in quiescent cells and enhanced by both growth factors, while the alpha v integrin subunit mRNA level did not change with growth factor addition. Therefore, appearance of the alpha v beta 3 integrin protein complex after growth factor stimulation was due to increased expression of the beta 3 integrin subunit mRNA. The TGF-beta 1 induced increase in beta 3 integrin mRNA was delayed, but did not require prior protein synthesis, since cycloheximide was unable to block the increase in beta 3 mRNA level. By contrast, PDGF-BB induced a more rapid increase in beta 3 integrin mRNA level that peaked by 6 h after growth factor addition and no detectable beta 3 integrin mRNA remained after 24 h. Interestingly, the PDGF-BB induced elevation of beta 3 integrin, although more rapid, was completely inhibited by cycloheximide. Expression of the alpha 5 integrin subunit in response to growth factors was very similar to beta 3. However, in contrast to beta 3 and alpha 5, neither TGF-beta 1 nor PDGF-BB were able to alter the expression of the beta 1 integrin subunit in vascular SMC. However, in TGF-beta 1 treated cells, there was a large increase in expression of a 190 kDa polypeptide that was associated with the beta 1 integrin subunit. This 190 kDa polypeptide was not detected in PDGF treated SMC or in TGF-beta 1 treated fibroblasts. The alpha 1 integrin subunit has a MW of approximately 190 kDa and is capable of complexing with beta 1. Analysis of the alpha 1 integrin subunit mRNA level indicated that it was indeed induced by TGF-beta 1, but not by PDGF-BB, suggesting that the 190 kDa polypeptide may be the alpha 1 integrin subunit. These results indicate that TGF-beta 1 and PDGF-BB are potent but distinct activators of integrin expression in vascular SMC.  相似文献   

11.
12.
Highly purified rat and cow brain synaptic vesicles contain major proteins with molecular weights of approximately 74,000, 60,000, 57,000, 40,000, 38,000, and 34,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The presence of the major proteins on synaptic vesicles was confirmed by immunoprecipitation of intact rat brain synaptic vesicles with a synaptic vesicle-specific monoclonal antibody. The 40,000-Mr protein appeared to be identical to the 38,000-Mr integral membrane glycoprotein, p38 or synaptophysin, previously identified as a major component of mammalian synaptic vesicles. The isoelectric point of the 75,000-Mr proteins from either rat or cow brain synaptic vesicles is 5.0, and the pI of the 57,000-Mr protein is approximately 5.1 in both species. The similarity in size and charge of several major proteins in rat and cow synaptic vesicles suggests a high degree of structure conservation of these proteins in diverse mammalian species and raises the possibility that a set of functions common to most or all mammalian synaptic vesicles is mediated by these proteins.  相似文献   

13.
We determined the site of synthesis of apolipoprotein (apo) E and apo-A-I in rabbit by measuring in vitro translational activity of their mRNAs from the liver and from the intestine. Poly(A+) RNA isolated from liver and intestinal epithelium of rabbits fed either a chow diet or a cholesterol-rich diet was translated in vitro in the rabbit reticulocyte lysate system using [35S] methionine as the labeled precursor. Newly synthesized apolipoproteins were immunoprecipitated with specific antisera and quantitated after electrophoresed on 10% polyacrylamide slab gels in the presence of 0.2% sodium dodecyl sulfate. The levels of liver apo-E and apo-A-I mRNAs from chow-fed rabbits are 0.41 and 0.002% of total translatable mRNA, respectively. The level of liver apo-A-I mRNA in the rabbit is approximately 500-fold lower than the reported level of apo-A-I mRNA in rat and human livers. Rabbit intestinal apo-E and apo-A-I mRNAs levels are 0.0036 and 0.67%, respectively. Our results indicate that in rabbits apo-E is synthesized primarily in the liver and that apo-A-I is synthesized primarily in the intestine. When rabbits are fed a cholesterol-rich diet, liver and intestinal apo-E in mRNA levels and intestinal apo-A-I mRNA levels are not changed. In contrast, the liver apo-A-I mRNA level increases 5-fold in response to the cholesterol-rich diet. However, because the intestinal liver apo-A-I mRNA level is so low, the 5-fold induction only increases liver mRNA levels to 2.7% of the corresponding intestinal apo-A-I mRNA level.  相似文献   

14.
15.
Blood vessels are composed of endothelial cells (EC) and mural cells, and the interaction between EC and mural cells is essential for the development and maintenance of the vasculature. EC differentiate from bone marrow-derived endothelial progenitor cells (EPC). Recently, we established a conditionally immortalized bone marrow EPC-derived cell line, TR-BME2, and a brain capillary EC (BCEC) line, TR-BBB, from temperature-sensitive-SV40 T-antigen gene transgenic rats. To understand the function of EPC, it is important to analyze the difference between EPC and mature EC such as BCEC. In this study, we identified EPC-specific genes by means of subtractive hybridization between TR-BME2 and TR-BBB. There was no significant difference between TR-BME2 and TR-BBB in the mRNA level of annexin II, which is expressed in EC. In contrast, the mRNA level of smooth muscle cell (SMC) markers such as smooth muscle protein 22 (SM22), calvasculin, and platelet-derived growth factor (PDGF) receptor-beta, was higher in TR-BME2 than in TR-BBB. Moreover, the mRNA level of contractile SMC markers, such as smooth muscle alpha-actin and SM22, was increased in the absence of EC growth factors, such as vascular endothelial growth factor. The mRNA level of synthetic SMC markers, such as matrix Gla protein, was increased by the addition of PDGF-BB. The SMC derived from TR-BME2 showed an altered phenotype, from contractile-type to synthetic-type, when they were cultured in the absence of PDGF-BB. These results show that TR-BME2 cells have higher levels of SMC markers compared with mature EC, and can differentiate into contractile- or synthetic-type SMC.  相似文献   

16.
In culture, vascular smooth muscle cells (SMC) grow in a "hill-and-valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet-derived growth factor-mediated proliferation of these cells in two-dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury.  相似文献   

17.
18.
The conversion of angiotensin I (AT-I) to angiotensin II (AT-II) by angiotensin I-converting enzyme (ACE) is a key step in the action of angiotensins. ACE is constitutively expressed in endothelial cells, but can also be detected at low levels in smooth muscle cells (SMC). Furthermore, in rats the ACE activity can be induced in SMC in vivo by experimental hypertension or vascular injury and in vivo by corticoid treatment. This study was therefore undertaken to evaluate the conversion of AT-I and its subsequent effects in SMC in basal conditions and after stimulation by dexamethasone. Using rat and human SMC, showed that dexamethasone induced ACE expression and that this enzyme was functional, leading to AT-II-dependent intracellular signaling. A fourfold increase in phospholipase C activity in response to AT-I was observed in dexamethasone-activated SMC compared with quiescent SMC. This effect of dexamethasone on signal transduction is dependent on ACE activity, whereas AT-II receptor parameters remain unchanged. The action of AT-I was blocked by an AT1 receptor antagonist, suggesting that it was mediated by AT-II. Similarly, dexamethasone-induced ACE expression was present in human SMC, and calcium signaling was mobilized in response to AT-I in activated human cells. Experiments performed with cocultures of endothelial cells and SMC in a Transwell system showed that the response to AT-I was limited to the compartment where AT-I was localized, suggesting that AT-I does not pass through the endothelial cell barrier to interact with underlying SMC. Our data suggest that in rat, as in human SMC, the conversion of AT-I into AT-II and the signal transduction in response to AT-I are ACE expression-dependent. In addition, the present findings show that this SMC response to AT-I is endothelium-independent, supporting the idea of a local generation of AT-II in the vascular wall.  相似文献   

19.
The expression of a set of cell cycle dependent (CCD) genes (c-fos, c-myc, ornithine decarboxylase (ODC), and thymidine kinase (TK)) was comparatively studied in cultured arterial smooth muscle cells (SMC) during exit from quiescence and exponential proliferation. These genes, which were not expressed in quiescent SMC, were chronologically induced after serum stimulation. c-fos mRNA were rapidly and transiently expressed very early in the G1 phase; c-myc and ODC peaked a few hours after serum stimulation and then remained at an intermediary level throughout the first cell cycle; TK mRNA and activity then appeared at the G1/S boundary and peak in G2/M phases. Except for c-fos, the other genes were also expressed in asynchronously cycling SMC (ACSMC); their expression was studied in elutriated subpopulations representative of cell cycle progression. c-fos mRNA were undetectable in any sorted subpopulations, even in the pure early G1 population. Despite a slight increase as the cell cycle advanced, c-myc and ODC genes were expressed throughout the ACSMC cell cycle. A faint TK activity was found in G1 subpopulations and increased in populations enriched in other phases; in contrast, TK mRNA remained highly expressed in all elutriated subpopulations. This study demonstrates significant modulations in CCD gene expression between quiescent stimulated and asynchronously cycling SMC in culture. This suggests that the events occurring during the emergence of SMC from quiescence are probably different from those in the G1 phase of ACSMC.  相似文献   

20.
Smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of vascular diseases such as atherosclerosis and postangioplasty restenosis. Recently we demonstrated the thiol antioxidantN-acetylcysteine (NAC) inhibits constitutive NF-κB/Rel activity and growth of vascular SMCs. Here we show that treatment of human and bovine aortic SMC with the thiol antioxidant NAC causes cells to exit the cell cycle and remain quiescent as determined by a greatly reduced incorporation of [3H]thymidine and G0/G1DNA content. Removal of NAC from the culture medium stimulates SMCs to synchronously reenter the cell cycle as judged by induction of cyclin D1 and B-mybgene expression during mid and late G1phase, respectively, and induction of histone gene expression and [3H]thymidine incorporation during S phase. The time course of cyclin D1, B-myb,and histone gene expression after NAC removal was similar to that of serum-deprived cells induced to resume cell cycle progression by the addition of fetal bovine serum to the culture medium. Taken together, these results indicate that NAC treatment causes SMCs to enter a reversible G0quiescent, growth-arrested state. Thus, NAC provides an important new method for synchronizing SMCs in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号