首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In view of their intriguing structural and electrical properties, the linear and nonlinear optical (NLO) responses of six carbon nanotube (CNT) molecules substituted by nitrogen atoms at one end have been explored by using the CAM-B3LYP method. Molecules 1, 2 and 3 were obtained by increasing the lengths of the CNTs, and 1-Li, 2-Li and 3-Li were constructed by doping one Li atom into the N-substituted end of 1, 2 and 3 (mentioned above), respectively. Two effective approaches have been proposed to increase nonlinear optical properties(NLO): increasing the length of the CNT as well as doping one Li atom into the N-substituted end. The results show that both the linear polarizabilities (α(0)) and nonlinear first hyperpolarizabilities (β(tot)) values increase with increasing the lengths of the CNTs: 188 of 1 < 307 of 2 < 453 of 3 for α(0) and 477 of 1 < 2654 of 2 < 3906 au of 3 for β(tot). Significantly, compared with the non-doped CNTs, the β(tot) values are remarkably enhanced by doping one Li atom into the N-substituted end: 477 of 1 < 23258 of 1-Li, 2654 of 2 < 37244 of 2-Li, and 3906 of 3 < 72004 au of 3-Li. Moreover, the β(vec) values show a similar trend to the β(tot) values. Our results may be beneficial to experimentalists in exploring high-performance nonlinear optical materials based on CNT.  相似文献   

2.
We have measured the vibrational modes of the sound producing membrane in the syrinx of zebra finches and canaries. Excised syringes were driven with a frequency-swept acoustic pressure wave through the trachea, and the resulting vibrations measured using a laser interferometer. The frequency-dependent membrane compliance was measured at 10-20 different positions, giving a detailed picture of the linear vibrational modes of the two membrane components, the medial labium and the medial tympaniform membrane. Nonlinear properties of the membrane were determined by measuring the linear response at several superimposed static pressures. The membrane compliance is dominated by the lowest vibrational mode, a narrow mechanical resonance, at roughly 700 Hz in the zebra finch, that extends over the entire membrane. Several higher-frequency modes were also observed. The frequency of the lowest vibrational mode is determined largely by the mass of the heavier medial labium, rather than the thinner medial tympaniform membrane, suggesting that the medial labium is critical in determining the oscillatory frequency of the syrinx. The difference in mass of the medial labium and medial tympaniform membrane may serve to produce a wave-like motion of the membranes during flow-driven oscillations, thus increasing the efficiency of sound production. Implications for mechanisms of frequency tuning are discussed.  相似文献   

3.
In the present work, Li@porphyrins and their derivatives were designed in order to explore the effect of dehydrogenation/hydrogenation on linear and nonlinear optical properties. Their stable structures were obtained by the M06-2X method. Moreover, the M06-2X method showed that dehydrogenation/hydrogenation has greatly influences polarizabilities (α (0) values) and hyperpolarizabilities (β (tot) and γ (tot) values): α (0) values ranged from 331 to 389 au, β (tot) values from 0 to 2465 au, and γ (tot) values from -21.2?×?10(4) to 21.4?×?10(4) au. This new knowledge of the effect of dehydrogenation/hydrogenation on nonlinear optical properties may prove beneficial to the design and development of high-performance porphyrin materials.  相似文献   

4.
The polycyclic p-quinodimethanes are proposed to be the novel candidates of the high-performance nonlinear optical (NLO) materials because of their large third order polarizabilities (γ). We investigate the switchable NLO responses of a series of polycyclic p-quinodimethanes with redox properties by employing the density functional theory (DFT). The polycyclic p-quinodimethanes are forecasted to exhibit obvious pure diradical characters because of their large y 0 index (the y 0 index is a value between 0 [closed-shell state] and 1 [pure biradical state]). The γ values of these polycyclic p-quinodimethanes and their corresponding one-electron and two-electron reduced/oxidized species are calculated by the (U)BHandHLYP method. The γ values of polycyclic p-quinodimethanes and their corresponding one-electron reduced species are all positive and significantly different. The large differences of the γ values are due to a change in the transition energy and are related to the different delocalization of the spin density, which demonstrates that the NLO switching is more effective on one-electron reduction reactions. Therefore, the study on these polycyclic p-quinodimethanes provides a guideline for a molecular design of highly efficient NLO switching.
Figure
The NLO switching is more effective on one-electron reduction reaction  相似文献   

5.
The axially substituted binuclear GaCl/GaCl phthalocyanine 1 with an unsymmetrical pattern of substitution has been prepared and its nonlinear optical (NLO) properties determined. The resulting binuclear complex retains approximately the same transition energies of monomeric (RO)8PcGaCl as far as the linear optical spectrum is concerned, although 1 has a double concentration of central atoms per molecule and an enlarged conjugated ligand. The lack of significant spectral shifts in passing from mononuclear to binuclear complexes has been rationalized theoretically by means of density functional theory calculations. The purpose of the present study is to determine whether binuclearity affects the optical limiting behavior of 1 with respect to monomeric (RO)8PcGaCl in the NLO regime determined by nanosecond laser pulses. Figure Bis axially substituted binuclear phthalocyanine: synthesis, DFT calculations and NLO properties Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday.  相似文献   

6.
A theoretical analysis of the linear and nonlinear optical properties of six push–pull π-conjugated molecules with stilbene, azobenzene and benzilideneaniline as a backbone is presented. The photophysical properties of the investigated systems were determined by using response functions combined with density functional theory (DFT). Several different exchange-correlation potentials were applied in order to determine parameters describing the one- and two-photon spectra of the studied molecules. In particular, the recently proposed Coulomb-attenuated model (CAM-B3LYP) was used to describe charge-transfer (CT) excited states. In order to compare theoretical predictions with available experimental data, calculations with inclusion of solvent effects were performed. The BLYP and the CAM-B3LYP functionals were found to yield values of two-photon absorption (TPA) probabilities closer to experimental values than the B3LYP functional or the HF wavefunction. Moreover, molecular static hyperpolarisabilities were determined using both DFT and second-order Møller-Plesset perturbation (MP2) theory. Likewise, the CAM-B3LYP functional was found to outperform other applied exchange-correlation potentials in determining first hyperpolarisability (β). Moreover, it was confirmed on a purely theoretical basis that the presence of a –C=C– bridge between the phenyl rings leads to a much larger nonlinear optical response in comparison with a –N=N– bridge.  相似文献   

7.
The results of computations of spectroscopic parameters of lowest–lying electronic excited states of azobenezene derivatives are presented. The analysis of experimentally recorded spectra was supported by quantum chemical calculations using density functional theory. The theoretically determined resonant (two-photon absorption probabilities) and non-resonant (first-order hyperpolarisability) nonlinear optical properties are also discussed, with an eye towards the performance of recently proposed long-range corrected (LRC) schemes (LC–BLYP and CAM–B3LYP functionals). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Experimental evidence suggests DNA mechanical properties, in particular intrinsic curvature and flexibility, have a role in many relevant biological processes. Systematic investigations about the origin of DNA curvature and flexibility have been carried out; however, most of the applied experimental techniques need simplifying models to interpret the data, which can affect the results. Progress in the direct visualization of macromolecules allows the analysis of morphological properties and structural changes of DNAs directly from the digitised micrographs of single molecules. In addition, the statistical analysis of a large number of molecules gives information both on the local intrinsic curvature and the flexibility of DNA tracts at nanometric scale in relatively long sequences. However, it is necessary to extend the classical worm-like chain model (WLC) for describing conformations of intrinsically straight homogeneous polymers to DNA. This review describes the various methodologies proposed by different authors.  相似文献   

9.
The theory of optical properties of nanoparticles is considered with the aid of dispersion relations, which are based on the Kramers-Kronig analysis. It is shown that one can utilize rather general dispersion relations, which hold for liquid matrices that contain nanoparticles. Wiener bounds incorporating the Kramers-Kronig analysis are utilized in assessment of the complex permittivity of a nanoparticle.  相似文献   

10.
This paper describes a joint study of the structure and nonlinear optical properties of vacuum evaporated thin films of copper phthalocyanine (CuPc for brevity). Film thickness ranges from 50 to 500 nm. The anisotropic paramagnetic resonance of Cu++ ions reveals that the Pc rings lie almost parallel to the substrate plane with however a large angular distribution (30° FWHM). Third harmonic optical generation measurements performed at 1.064 m and 1.907 m fundamental wavelengths give respectively an average value of the cubic susceptibility (3)(-3,)=(4±0.4)·10–12 e.s.u. and (2.1+-0.2) · 10-12 These values, although significantly higher than for a common ionic crystal, are about one order of magnitude lower than in conjugated 1-D systems, which shows that the 2-D -electron delocalization is less profitable than the 1-D one. Besides third harmonic, we have also observed second harmonic generation. Its polarization dependence is characteristic of a quadratic susceptibility enhanced in one direction, almost perpendicular to the substrate, withd eff comprised between 30 and 60 · 10-9 e.s.u. The possible origins ofd eff are discussed.  相似文献   

11.
Nonlinear, linear and failure properties of articular cartilage and meniscus in opposing contact surfaces are poorly known in tension. Relationships between the tensile properties of articular cartilage and meniscus in contact with each other within knee joints are also not known. In the present study, rectangular samples were prepared from the superficial lateral femoral condyle cartilage and lateral meniscus of bovine knee joints. Tensile tests were carried out with a loading rate of 5 mm/min until the tissue rupture. Nonlinear properties of the toe region, linear properties in larger strains, and failure properties of both tissues were analysed. The strain-dependent tensile modulus of the toe region, Young's modulus of the linear region, ultimate tensile stress and toughness were on average 98.2, 8.3, 4.0 and 1.9 times greater (p<0.05) for meniscus than for articular cartilage. In contrast, the toe region strain, yield strain and failure strain were on average 9.4, 3.1 and 2.3 times greater (p<0.05) for cartilage than for meniscus. There was a significant negative correlation between the strain-dependent tensile moduli of meniscus and articular cartilage samples within the same joints (r=−0.690, p=0.014). In conclusion, the meniscus possesses higher nonlinear and linear elastic stiffness and energy absorption capability before rupture than contacting articular cartilage, while cartilage has longer nonlinear region and can withstand greater strains before failure. These findings point out different load carrying demands that both articular cartilage and meniscus have to fulfil during normal physiological loading activities of knee joints.  相似文献   

12.
13.
14.
A facile and eco‐friendly hydrothermal method was used to prepare carbon quantum dots (CQDs) using orange waste peels. The synthesized CQDs were well dispersed and the average diameter was 2.9 ± 0.5 nm. Functional group identification of the CQDs was confirmed by Fourier transform infrared spectrum analysis. Fluorescence properties of the synthesized CQDs exhibited blue emission. The fluorescence quantum yield of the CQDs was around 11.37% at an excitation wavelength of 330 nm. The higher order nonlinear optical properties were examined using a Z‐scan technique and a continuous wave laser that was operated at a wavelength of 532 nm. Results demonstrated that the synthesis of CQDs can be considered as promising for optical switching devices, bio‐scanning, and bio‐imaging for optoelectronic applications.  相似文献   

15.

Background

Harmonic Nanoparticles are a new family of exogenous markers for multiphoton imaging exerting optical contrast by second harmonic (SH) generation. In this tutorial, we present the application of Hyper-Rayleigh Scattering (HRS) for a quantitative assessment of the nonlinear optical properties of these particles and discuss the underlying theory and some crucial experimental aspects.

Methods

The second harmonic properties of BaTiO3, KNbO3, KiTiOPO4 (KTP), LiNbO3 and ZnO nanocrystals (NCs) are investigated by HRS measurements after careful preparation and characterization of colloidal suspensions.

Results

A detailed analysis of the experimental results is presented with emphasis on the theoretical background and on the influence of some experimental parameters including the accurate determination of the nanocrystal size and concentration. The SH generation efficiency and averaged nonlinear optical coefficients are then derived and compared for six different types of NCs.

Conclusions

After preparation of colloidal NC suspensions and careful examination of their size, concentration and possible aggregation state, HRS appears as a valuable tool to quantitatively assess the SH efficiency of noncentrosymmetric NCs. All the investigated nanomaterials show high SH conversion efficiencies, demonstrating a good potential for bio-labelling applications.
  相似文献   

16.
As a kind of novel organometallic complexes, the cyclopentadienylcobalt (CpCo) linear [4]phenylene complexes (4 = number of benzene rings) display efficient switchable nonlinear optical (NLO) response when CpCo reversibly migrates along the linear [4]phenylene triggered by heating or lighting. In this paper, the second-order NLO properties for CpCo linear [4]phenylene complexes were calculated by using the density functional theory (DFT) methods with four functionals. All of the functionals yield the same order of β tot values: 1<2<4<3. The effect of solvent on second-order NLO properties has been studied using polarized continuum model (PCM) in the tetrahydrofuran (THF) solution. The solvent leads to a slight enhancement of the NLO responses for the studied complexes relevant to their NLO responses in vacuo. The electronic absorption spectra were investigated by the TDDFT methods. The TDDFT calculations indicate that the maximum absorption peaks of complexes 2–4 in the near-infrared spectrum area show the bathochromic shift together with a decreasing intensity compared to complex 1. We have also found that the cobalt (Co) atom acts as a donor in all the organometallic complexes and the d → π* and π → π* charge transfer (CT) transitions contribute to the enhancement of second-order NLO response. Furthermore, two experimentally existing complexes 1 and 3 are found to have a large difference in β tot values. It is our expectation that this difference may stimulate the search for a new type of switchable NLO material based on CpCo linear [4]phenylene complexes.
Figure
The second-order NLO properties of the cyclopentadienylcobalt (CpCo) linear [4]phenylene complexes were investigated by density functional theory (DFT) method, and complexes 1 and 3 display switchable NLO responses.  相似文献   

17.
In modern drug discovery process, ADME/Tox properties should be determined as early as possible in the test cascade to allow a timely assessment of their property profiles. To help medicinal chemists in designing new compounds with improved pharmacokinetics, the knowledge of the soft spot position or the site of metabolism (SOM) is needed. In silico methods based on docking, molecular dynamics and quantum chemical calculations can bring us closer to understand drug metabolism and predict drug–drug interactions. We report herein on a combined methodology to explore the site of metabolism prediction of a new cardioactive drug prototype, LASSBio-294 (1), using MetaPrint2D to predict the most likely metabolites, combined with structure-based tools using docking, molecular dynamics and quantum mechanical calculations to predict the binding of the substrate to CYP2C9 enzyme, to estimate the binding free energy and to study the energy profiles for the oxidation of (1). Additionally, the computational study was correlated with a metabolic fingerprint profiling using LC-MS analysis. The results obtained using the computational methods gave valuable information about the probable metabolites of (1) (qualitatively) and also about the important interactions of this lead compound with the amino acid residues of the active site of CYP2C9. Moreover, using a combination of different levels of theory sheds light on the understanding of (1) metabolism by CYP2C9 and its mechanisms. The metabolic fingerprint profiling of (1) has shown that the metabolites founded in highest concentration in different species were metabolites M1, M2 and M3, whereas M8 was found to be a minor metabolite. Therefore, our computational study allowed a qualitative prediction for the metabolism of (1). The approach presented here has afforded new opportunities to improve metabolite identification strategies, mediated by not only CYP2C9 but also other CYP450 family enzymes.  相似文献   

18.
19.
The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.  相似文献   

20.
Simple electronic structure models are used to address two significant challenges in organic materials chemistry, the design of chromophores for strong electro-optic response (and low-energy optical absorption), and the prediction of relative mobilities and charge injection barriers for conductive oligomers. For electro-optic response, we examine two chromophore classes where twisting around an inter-ring bond can tune the electronic structure from aromatic (zwitterionic) to quinoid (neutral). The calculated nonlinear response develops a very strong maximum (βμ ∼ 1500 ×10−30 esu) at twist angles near 80°. For the transport behavior, structure/function correlations are presented for three series of oligomers, based on calculations of bandwidths (as functions of geometry) and of reorganization energies. Transport type appears to be fixed less by these mobility factors than by the injection barriers. The simplest estimates for these Schottky-type barriers, using frontier orbital energies from density functional calculations, predict carrier n-type or p-type behavior remarkably well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号