首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study was designed to evaluate potential antibacterial activities of synthetic LFchimera against five plant pathogenic bacteria such as Ralstonia solanacearum, Erwinia amylovora, Xanthomonas campestris, Pseudomonas syringae and Pectobacterium carotovorum. The agar disc-diffusion method with different concentrations (0.2, 0.4, 0.6 and 0.8 μM) of peptide was used to study the antibacterial activity of LFchimera against bacteria. The Minimum Inhibitory Concentration (MIC) of the LFchimera peptide were tested using serial dilution method at concentration ranging from 0 to 10 μM. The Results from agar disc-diffusion method revealed that LFchimera was effective against all bacterial strain in a dose-dependent manner. LFchimera showed highest activity in 0.8 μM which was significant compared to the standard antibiotic. LFchimera pepetide showed low MIC values (4 μM) against all tested bacteria. LFchimera peptide was found to show antibacterial activity against important phytopathogenic bacteria and can improve the potential of an antimicrobial peptide in plant disease management.  相似文献   

2.
A putative cathelicidin antimicrobial peptide of 34 amino acid residues was deduced from buffalo myeloid gene sequences and named as Buffalo myeloid antimicrobial peptide-34 (BuMAP-34). Structure–function relationship of the custom synthesized peptide was evaluated in vitro. Highly cationic, amphipathic peptide showed a net charge of +6 and predicted hydrophobic ratio of 38 %. Phylogenetic analysis revealed an evolutionary relationship with Bovine myeloid antimicrobial peptide-34 (BMAP-34) of cattle, myeloid antimicrobial peptide-34 (MAP-34) of Goat and Sheep myeloid antimicrobial peptide-34 (SMAP-34). Peptide showed potent antimicrobial activity against a wide spectrum of microorganisms including Gram-negative and Gram-positive bacteria and fungi. Minimum inhibitory concentration (MIC) on various strains of bacteria, and fungus ranged from 1.1 to 1.5 µM except for P. multocida multocida (HS), which was >100 µM. Scanning electron microscopic (SEM) analysis of the peptide treated E. coli, S. aureus and C. albicans indicated cell lysis. Peptide also showed its ability to bind with anionic components of the cells which was confirmed by DNA binding assay. Haemolytic activity assay revealed absence of haemolysis in human RBCs at 12.5 µM and in sheep RBCs even at 100 µM concentration of the peptide. The present study suggests that the cathelicidin, BuMAP-34 has strong antimicrobial activity and could be developed as a promising broad spectrum antimicrobial agent.  相似文献   

3.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

4.
The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicrobial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N′-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from <0.5 to >500 μM against bacteria and 1.0 to >31.3 μg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12 to 3.29 μM. Overall, these studies show that bis(N-amidinohydrazones) and N-(amidino)-N′-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents.  相似文献   

5.
Bacterial multiresistance is a health problem worldwide that demands new antimicrobials for treating bacterial-related infections. In this study, we evaluated the antimicrobial activity and the theoretical toxicology profile of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazide derivatives against gram-positive and gram-negative bacteria clinical strains. On that purpose we determined the minimum inhibitory (MIC) and bactericidal (MBC) concentrations, the in vitro cytotoxicity, and in silico risk profiles, also comparing with antimicrobial agents of clinical use. Among the 16 derivatives analyzed, four nitrofurans (N–H–FUR–NO2, N–Br–FUR–NO2, N–F–FUR–NO2, N–Cl–FUR–NO2) showed promising MIC and MBC values (MIC = MBC = 1–16 μg/mL). The experimental data revealed the potential of these derivatives, which were comparable to the current antimicrobials with similar bactericidal and bacteriostatic profiles. Therefore, these molecules may be feasible options to be explored for treating infections caused by multiresistant strains. Our in vitro and in silico toxicity reinforced these results as these derivatives presented low cytotoxicity against human macrophages and low theoretical risk profile for irritant and reproductive effects compared to the current antimicrobials (e.g., vancomycin and ciprofloxacin). The molecular modeling analysis also revealed positive values for their theoretical druglikeness and drugscore. The presence of a 5-nitro-2-furfur-2-yl group seems to be essential for the antimicrobial activity, which pointed these acylhydrazone derivatives as promising for designing more potent and safer compounds.  相似文献   

6.
Yan X  Zhong J  Liu H  Liu C  Zhang K  Lai R 《Gene》2012,492(2):368-374
A novel cathelicidin-like antimicrobial peptide was identified by mining genome of panda. This peptide (cathelicidin-AM) was synthesized. It showed potential antimicrobial activities against wide spectrum of microorganisms including Gram-negative and -positive bacteria, and fungi. It had similar antimicrobial abilities against both standard and clinically isolated drug-resistant strains. Cathelicidin-AM could rapidly exert its antibacterial activities. It just took less than 1 h to kill all Staphylococcus sciuri at the concentration of 2, 4 or 10 times of minimal inhibitory concentration (MIC) while clindamycin took 6 h. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis indicated that cathelicidin-AM killed bacteria by directly affecting bacterial cell wall and membrane. Phylogenetic analysis revealed that the panda cathelicidin had the nearest evolution relationship with dog cathelicidin. The current work provides a novel cathelicidin-like peptide with strong antimicrobial abilities.  相似文献   

7.
RIWVIWRR-NH2 (Bac8c) is a natural antimicrobial peptide (AMP) exhibiting great antibacterial activity against Gram-negative and Gram-positive bacteria. In this work, lipoic acid was used as a fatty acid hydrophobic ligand to modify Bac8c (LA-Bac8c) to further improve its antimicrobial properties. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) assays showed that LA-Bac8c exhibited lower MIC (MBC) values against Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA) than Bac8c. Similar results were reflected in the antibiofilm activity towards S. aureus and MRSA, and LA-Bac8c showed better activity to the biofilm which has been formed or is being formed. In addition to this, the obvious interaction between bacteria/biofilm and LA-Bac8c was observed by microscopy. LA-Bac8c displayed strong membrane depolarization and outer membrane permeabilizing ability, and the cell membrane treated with LA-Bac8c was destroyed to the leakage of bacteria cellular components. All these data indicated LA-Bac8c could be used as a useful antimicrobial peptide with wide application prospect.  相似文献   

8.
Antimicrobial peptides (AMPs) are produced in all living organisms including insects in a non-specific manner, and act as innate immune defense arsenal against the invading pathogens. Muga silkworm (Antheraea assamensis) larvae were injected with Candida albicans and AMPs were isolated from the hemolymph after extracting with methanol, acetic acid and water mixture (90:1:9) and evaluated for antimicrobial activity against fungal and bacterial pathogens. Further purification was done through successive semipreparative and analytical reversed phase HPLC using C-18 column. The obtained fractions were collected, lyophilized and tested for antimicrobial activity. Among the HPLC fractions, one showed highest activity with MIC value of 64 µg/ml against Gram-negative bacteria, Escherichia coli and Enterobacter cloacae. Purity of this isolated peptide was confirmed by SDS-PAGE and TLC, and its molecular mass was determined as 9.052 kDa by MALDI-TOF mass spectrometry. From the mass fingerprinting analysis of this peptide after trypsin digestion a peptide fragment with molecular mass of 2622.7 Da was obtained. De novo sequencing of this peptide fragment following MS/MS analysis identified few amino acid residues as “KSGGGGWGS” with a total score of 46.9 with gloverin peptide of A. mylitta. The peptide inhibited biofilm formation of the Gram-negative bacterial pathogens. SEM study revealed that peptide disrupted bacterial cell wall to leach out intracellular materials and may be the major target for its antimicrobial activity.  相似文献   

9.
To develop short antimicrobial peptide with improved cell selectivity and reduced mammalian cell toxicity compared to sheep myeloid antimicrobial peptide-29 (SMAP-29) and elucidate the possible mechanisms responsible for their antimicrobial action, we synthesized a N-terminal 18-residue peptide amide (SMAP-18) from SMAP-29 and its Trp-substituted analog (SMAP-18-W). Due to their reduced hemolytic activity and retained antimicrobial activity, SMAP-18 and SMAP-18-W showed higher cell selectivity than SMAP-29. In addition, SMAP-18 and SMAP-18-W had no cytotoxicity against three different mammalian cells such as RAW 264.7, NIH-3T3 and HeLa cells even at 100 μM. These results suggest that SMAP-18 and SMAP-18-W have potential for future development as novel therapeutic antimicrobial agent. Unlike SMAP-29, SMAP-18 and SMAP-18-W showed relatively weak ability to induce dye leakage from bacterial membrane-mimicking liposomes, N-phenyl-1-napthylamine (NPN) uptake and o-nitrophenyl-β-galactoside (ONPG) hydrolysis. Similar to SMAP-29, SMAP-18-W led to a significant membrane depolarization (>80 %) against Staphylococcus aureus at 2 × MIC. In contrast, SMAP-18 did not cause any membrane depolarization even at 4 × MIC. In confocal laser scanning microscopy, we observed translocation of SMAP-18 across the membrane in a non-membrane disruptive manner. SMAP-29 and SMAP-18-W were unable to translocate the bacterial membrane. Collectively, we propose here that SMAP-29 and SMAP-18-W kill microorganisms by disrupting/perturbing the lipid bilayer and forming pore/ion channels on bacterial cell membranes, respectively. In contrast, SMAP-18 may kill bacteria via intracellular-targeting mechanism.  相似文献   

10.
The crude extracts of Dietes bicolor leaves, flowers and rhizomes were subjected to comparative antimicrobial screening against two Gram-positive, two Gram-negative bacteria and four fungal strains using the agar well diffusion method. The minimum inhibitory concentrations (MIC) of the tested extracts were also determined. Furthermore, the cytotoxic activity was evaluated. D. bicolor extracts generally demonstrated notable broad spectrum antimicrobial activities (MIC values  500 μg/mL) against all tested pathogens. D. bicolor leaf extract showed potent broad spectrum antimicrobial activity with MIC values ranging between 0.24 and 31.25 μg/mL against all tested pathogens. Moreover, the flowers extract exhibited promising antimicrobial activities, displaying MIC values ranging between 1.95 and 125 μg/mL against the tested bacteria and fungi. However, the rhizomes extract showed moderate antimicrobial activity with MIC values ranging between 31.25 and 500 μg/mL. Despite the potent antimicrobial activity of D. bicolor extracts, they were ineffective as cytotoxic agents against nine tested cancer cell lines, displaying 50% inhibitory concentration (IC50) values above 100 μg/mL. The reported potent antimicrobial activity along with the lack of measurable cytotoxic activity indicated that the antimicrobial activity of D. bicolor crude extracts is mediated through a mechanism other than cytotoxicity. These results suggest that D. bicolor can act as a potential source for natural antibacterial and antifungal agents with a good safety profile at a preliminary level.  相似文献   

11.
Antimicrobial peptides from a wide range of amphibian species, especially frogs of the genus Rana, have been characterised and are potential therapeutic agents. Here we describe the isolation, purification, and structural and biological characterisation of three novel antimicrobial peptides from the skin secretions of the black spotted frog, Rana nigromaculata, from Northeastern China. The peptides were identified as belonging to two known families: the temporin, which was first identified in R. nigromaculata from China, and the brevinin-2. Temporin-1RNa and temporin-1RNb both containing three positive charges and have a high potency against microorganisms (MIC: 3.13–8.3 μM against Gram-positive bacteria, 12.5–25.0 μM against Gram-negative bacteria, and 6.25–12.5 μM against Candida albicans) and a high haemolytic activity against human erythrocytes (HC50: 100–150 μM). Brevinin-2RNa contains a single intra-disulphide bridge at the C-terminus that is active towards the tested Gram-positive bacteria but is not active against E. coli and P. aeruginosa. The cDNAs encoding three novel peptide precursors were also subsequently cloned from an R. nigromaculata skin cDNA library and sequenced. The precursors contain 58–72 amino acid residues, which include a conserved signal peptide, acidic propeptide, and the mature temporin-1RNa, temporin-1RNb and brevinin-2RNa. The CD spectra of temporin-1RNa and temporin-1RNb in water, 30 mM SDS and 50 % trifluoroethanol (TFE) indicated that both peptides adopted an aperiodic structure in water and an organised structure with an α-helical conformation in TFE and SDS solution. The conformational transition induced by TFE or SDS reflects the potential ability of temporin-1RNa and temporin-1RNb to interact with anionic membranes.  相似文献   

12.
Cytotoxic and antimicrobial effects of Montivipera xanthina venom against LNCaP, MCF-7, HT-29, Saos-2, Hep3B, Vero cells and antimicrobial activity against selected bacterial and fungal species: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, E. coli O157H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus epidermidis ATCC 12228, S. typhimirium CCM 5445, Proteus vulgaris ATCC 6957 and Candida albicans ATCC 10239 were studied for evaluating the potential medical benefit of this snake venom. Cytotoxicity of venom was determined using MTT assay. Snake venom cytotoxicity was expressed as the venom dose that killed 50 % of the cells (IC50). The antimicrobial activity of venom was studied by minimal inhibitory concentration (MIC) and disc diffusion assay. MIC was determined using broth dilution method. The estimated IC50 values of venom varied from 3.8 to 12.7 or from 1.9 to 7.2 μg/ml after treatment with crude venom for 24 or 48 h for LNCaP, MCF-7, HT-29 and Saos-2 cells. There was no observable cytotoxic effect on Hep3B and Vero cells. Venom exhibited the most potent activity against C. albicans (MIC, 7.8 μg/ml and minimal fungicidal concentration, 62.5 μg/ml) and S. aureus (MIC, 31.25 μg/ml). This study is the first report showing the potential of M. xanthina venom as an alternative therapeutic approach due to its cytotoxic and antimicrobial effects.  相似文献   

13.
Tao R  Tong Z  Lin Y  Xue Y  Wang W  Kuang R  Wang P  Tian Y  Ni L 《Peptides》2011,32(8):1748-1754
Dental caries is a common oral bacterial infectious disease of global concern. Prevention and treatment of caries requires control of the dental plaque formed by pathogens such as Streptococcus mutans and Streptococcus sobrinus. Pleurocidin, produced by Pleuronectes americanus, is an antimicrobial peptide that exerts broad-spectrum activity against pathogenic bacteria and fungi. Moreover, pleurocidin shows less hemolysis and is less toxic than other natural peptides. In the present study, we investigated whether pleurocidin is an effective antibiotic peptide against common cariogenic microorganisms and performed a preliminary study of the antimicrobial mechanism. We assayed minimal inhibitory concentration (MIC), minimal bactericide concentration (MBC) and bactericidal kinetics and performed a spot-on-lawn assay. The BioFlux system was used to generate bacterial biofilms under controllable flow. Fluorescence microscopy and confocal laser scanning microscopy (CLSM) were used to analyze and observe biofilms. Scanning electron microscopy was used to observe the bacterial membrane. MIC and MBC results showed that pleurocidin had different antimicrobial activities against the tested oral strains. Although components of saliva could affect antimicrobial activity, pleurocidin dissolved in saliva still showed antimicrobial effects against oral microorganisms. Furthermore, pleurocidin showed a favorable killing effect against BioFlux flow biofilms in vitro. Our findings suggest that pleurocidin has the potential to kill dental biofilms and prevent dental caries.  相似文献   

14.
Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.  相似文献   

15.
The lactic acid bacteria (LAB) microbiota of Saudi chicken ceca was determined. From 60 samples, 204 isolates of lactic acid bacteria were obtained. Three isolates produced antimicrobial activities against Campylobacter jejuni, Listeria monocytogenes, and Bacillus subtilis. The isolate DN317, which had the highest activity against Campylobacter jejuni ATCC 33560, was identified as Lactobacillus curvatus (GenBank accession numbers: KX353849 and KX353850). Full inhibitory activity was observed after a 2-h incubation with the supernatant at pH values between 4 and 8. Only 16% of the activity was conserved after a treatment at 121 °C for 15 min. The use of proteinase K, pepsin, chymotrypsin, trypsin, papain, and lysozyme drastically reduced the antimicrobial activity. However, lipase, catalase, and lysozyme had no effect on this activity. The active peptide produced by Lactobacillus curvatus DN317 was purified by precipitation with an 80% saturated ammonium sulfate solution, and two steps of reversed phase HPLC on a C18 column. The molecular weight of this peptide was 4448 Da as determined by MALDI-ToF. N-terminal sequence analysis using Edman degradation revealed 47 amino acid residues (UniProt Knowledgebase accession number C0HK82) revealing homology with the amino acid sequences of sakacin P and curvaticin L442. The antimicrobial activity of the bacteriocin, namely curvaticin DN317, was found to be bacteriostatic against Campylobacter jejuni ATCC 33560. The use of microbial antagonism by LAB is one of the best ways to control microorganisms safely in foods. This result constitutes a reasonable advance in the antimicrobial field because of its potential applications in food technology.  相似文献   

16.
Bioactive peptides have been defined as specific protein fragments that have numerous biological activities. The aim of this study was to introduce three multifunctional peptides. Hence, we used rabbit lung angiotensin converting enzyme (ACE) inhibitor peptide AFKDEDTEEVPFR to prepare two analogous peptides KDEDTEEVP and KDEDTEEVH. ACE inhibitory, antioxidant, and antimicrobial activities of three synthetic peptides were investigated. Among the three peptides, KDEDTEEVP exhibited the highest ACE inhibitory activity with IC50 value of 69.63 ± 2.51 μM. Furthermore, the results of fluorescence spectroscopy and molecular modeling showed that KDEDTEEVP had more affinity to ACE than other peptides. The peptide of KDEDTEEVH showed the strongest antioxidant scavenging capacity on DPPH radicals (EC50 = 135 ± 9.62 μM), hydroxyl radicals (EC50 = 144 ± 8.73 μM), and ABTS radicals (EC50 = 62 ± 4.52%). Moreover, it showed the highest activity in iron-chelating test (EC50 = 226 ± 14.13 μM) and could also effectively inhibit the peroxidation of linoleic acid. The antimicrobial activity results showed that KDEDTEEVH had higher efficiency against Gram-positive than Gram-negative bacteria with MIC values of higher than 205 ± 10.75 μM. Although there was not a direct correlation between ACE inhibitor and antioxidant activity for analogous peptides, both analogous peptides exhibited more efficiency than the mother peptide. Thus, they can be considered as multifunctional peptides and would be beneficial ingredient to be used in food and drug industry.  相似文献   

17.
The exploration of poorly studied areas of Earth can highly increase the possibility to discover novel bioactive compounds. In this study, the cultivable fraction of fungi and bacteria from Barents Sea sediments has been studied to mine new bioactive molecules with antibacterial activity against a panel of human pathogens. We isolated diverse strains of psychrophilic and halophilic bacteria and fungi from a collection of nine samples from sea sediment. Following a full bioassay-guided approach, we isolated a new promising polyextremophilic marine fungus strain 8Na, identified as Aspergillus protuberus MUT 3638, possessing the potential to produce antimicrobial agents. This fungus, isolated from cold seawater, was able to grow in a wide range of salinity, pH and temperatures. The growth conditions were optimised and scaled to fermentation, and its produced extract was subjected to chemical analysis. The active component was identified as bisvertinolone, a member of sorbicillonoid family that was found to display significant activity against Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 30 μg/mL.  相似文献   

18.
Many pathogenic free living and biofilm forming bacterial organisms can cause serious infections to humans that could consequently have devastating effects on human health. A significant number of these microbial organisms are resistant to almost all known conventional antibiotics and the ability of some these strains to form sessile communities of biofilms increases the resistance ability of bacteria to antibiotic treatment. Global research is currently focused on finding novel therapies to counteract the threat of bacterial and biofilm infections rather than using conventional antibiotics. Mauriporin, a novel cationic α-helical peptide identified from the venom derived cDNA library of the scorpion Androctonus mauritanicus was reported to display selective cytotoxic and anti-proliferative activity against prostate cancer cell lines. In the present study, we investigated the antimicrobial and antibiofilm activities of Mauriporin. Our results show that Mauriporin displays potent antimicrobial activities against a range of Gram-positive and Gram-negative planktonic bacteria with MIC values in the range 5 µM to 10 µM. Mauriporin was also able to prevent Pseudomonas aeruginosa biofilm formation while showing weak hemolytic activity towards human erythrocytes. Studies on the mechanism of action of Mauriporin revealed that the peptide is probably inducing bacterial cell death through membrane permeabilization determined by the release of β-galactosidase enzyme from peptide treated Escherichia coli cells. Moreover, DNA binding studies found that Mauriporin can cause potent binding to intracellular DNA. All these results indicate that Mauriporin has a considerable potential for therapeutic application as a novel drug candidate for eradicating bacterial infections.  相似文献   

19.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   

20.
Microbial resistance to antibiotics is a global concern. The World Health Organization (WHO) has identified antimicrobial resistance as one the three greatest threats for human beings in the 21st century. Without urgent and coordinated action, the world is moving toward a post-antibiotic era, in which normal infections or minor injuries may become fatal. In an effort to find new agents, we report the synthesis and antimicrobial activities of 40 novel 1,3-diphenyl pyrazole derivatives. These compounds have shown zones of growth inhibition up to 85 mm against Acinetobacter baumannii. We tested the active compounds against this Gram-negative bacterium in minimum inhibitory concentration (MIC) tests and found activity with concentration as low as 4 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号