首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two cleavage pathways of beta-carotene have been proposed, one by central cleavage and the other by random (excentric) cleavage. The central cleavage pathway involves the metabolism of beta-carotene at the central double bond (15, 15') to produce retinal by beta-carotene 15, 15'-dioxygenase (E.C.888990988). The random cleavage of beta-carotene produces beta-apo-carotenoids, but the mechanism is not clear. To understand the various mechanisms of beta-carotene cleavage, beta-carotene was incubated with the intestinal postmitochondrial fractions of 10-week-old male rats for 1 h, and cleavage products of beta-carotene were analyzed using reverse-phase, high-performance liquid chromatography (HPLC). We also studied the effects of alpha-tocopherol and NAD(+)/NADH on beta-carotene cleavage. In addition to beta-carotene, we used retinal and beta-apo-14'-carotenoic acid as substrates in these incubations. Beta-apo-14'-carotenoic acid is the two-carbon longer homologue of retinoic acid. In the presence of alpha-tocopherol, beta-carotene was converted exclusively to retinal, whereas in the absence of alpha-tocopherol, both retinal and beta-apo-carotenoids were formed. Retinoic acid was produced from both retinal and beta-apo-14'-carotenoic acid incubations only in the presence of NAD(+). Our data suggest that in the presence of an antioxidant such as alpha-tocopherol, beta-carotene is converted exclusively to retinal by central cleavage. In the absence of an antioxidant, beta-carotene is cleaved randomly by enzyme-related radicals to produce beta-apo-carotenoids, and these beta-apo-carotenoids can be oxidized further to retinoic acid via retinal.  相似文献   

2.
Cyto- and genotoxic effects of novel aromatic nitroxide radicals in vitro   总被引:3,自引:0,他引:3  
Because of the increasing interest in the use of nitroxide radicals as antioxidants and probes for various applications in biological systems, the question of their toxicity is of paramount importance. Cytotoxicity and mutagenicity studies have been extensively performed with the commercially available aliphatic nitroxides, and the general outcome is that these compounds are nonmutagenic and relatively noncytotoxic. In this study, the cytotoxicity and genotoxicity of a new class of aromatic nitroxides that we have synthesized (i.e., indolinonic and quinolinic nitroxides), whose antioxidant activity has been established in both chemical and biological systems, were evaluated and compared with those of two commercial nitroxides and with that of butylated hydroxytoluene (BHT). The mutagenicity assay was performed using Salmonella typhimurium tester strains TA98, TA100, and TA102, chosen on the basis of their ability to detect various types of mutations and their sensitivity to oxidative damage. None of the compounds tested were found to be mutagenic. The colony-forming assay (CFA) using Chinese hamster ovary (CHO) AS52 cells was employed for determining the cytotoxicity of the test compounds. On comparing the effective dose that inhibits the CFA by 50% (IC(50)), most of the compounds tested on an equal molar concentration basis were less toxic than BHT. Therefore, the overall results obtained correlate well with the data reported in the literature on the toxicity of aliphatic nitroxides and lend support to the possible use of these compounds as therapeutic antioxidants.  相似文献   

3.
Increasing interest in the role of oxidative stress and beta-carotene in disease and prevention led us to examine the results of beta-carotene's administration in diabetic rats, a model for high-oxidative stress. In this experiment, amounts of lipid peroxidation, glutathione, and glutathione disulfide, and activity levels of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and gamma-glutamyl transpeptidase were measured in the liver, kidney, and heart of Sprague-Dawley rats with streptozotocin-induced diabetes, and after treatment with 10 mg/kg/day of beta-carotene for 14 days. Beta-carotene treatment resulted in the reversal of the diabetes-induced increase in hepatic and cardiac catalase activity, the decreased levels of glutathione disulfide in the heart, and the increased cardiac and renal levels of lipid peroxidation. Treatment with beta-carotene exacerbated the increased glutathione peroxidase activity in the heart and the decreased catalase activity in the kidneys. In contrast to reduced hepatic glutathione levels in untreated diabetic rats, beta-carotene treatment increased glutathione levels in diabetic rats. Increased hepatic gamma-glutamyl transpeptidase activity in diabetic rats was not reduced by treatment. Thus, beta-carotene therapy for 14 days prevented/reversed some, but not all, diabetes-induced changes in oxidative stress parameters.  相似文献   

4.
It has been found that beta-carotene cleavage products (CarCP), besides having mutagenic and toxic effects on mitochondria due to their prooxidative properties, also initiate spontaneous apoptosis of human neutrophils. Therefore, it was expected that antioxidants such as alpha-tocopherol would inhibit the stimulation of apoptosis and caspase-3 activity by CarCP. However, we found that alpha-tocopherol increases caspase-3 up-regulation and stimulation of apoptosis of human neutrophils by CarCP. Ascorbic acid does not alter this caspase-3 up-regulating and proapoptotic effect exerted by alpha-tocopherol. Both alpha-tocopherol and ascorbic acid, in the absence of CarCP, decrease intracellular caspase-3 activity and spontaneous apoptosis of neutrophils. Uric acid alone or in combination with CarCP does not exert apparent effects on caspase-3 activity and apoptosis. Up-regulating effect of alpha-tocopherol is not observed in the presence of retinol that markedly stimulates apoptosis by itself, whereas increase of caspase-3 activity is induced by concomitant addition of alpha-tocopherol and beta-ionone, a cyclohexenyl degradation product of beta-carotene with shorter aliphatic chain.  相似文献   

5.
beta-carotene pretreatment of rats decreased the methylation and formation of single-strand breaks in DNA and also decreased activity of alanine-aminotransferase, sorbitol dehydrogenase, gamma-glutamyl transpeptidase activities, caused by action of N-nitrosodimethylamine or synthesis of this carcinogen from precursors.  相似文献   

6.
There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance.  相似文献   

7.
There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance.  相似文献   

8.
The role of oxidative stress in chronic cadmium (Cd) toxicity and its prevention by cotreatment with beta-carotene was investigated. Adult male rats were intragastrically administered 2 mg CdCl2/kg body weight three times a week intragastrically for 3 and 6 weeks. Brain and testicular thiobarbituric acid reactive substances (TBARS) was elevated after 3 and 6 weeks of Cd administration, indicating increased lipid peroxidation (LPO) and oxidative stress. Cellular damage was indicated by inhibition of adenosine triphosphatase (ATPase) activity and increased lactate dehydrogenase (LDH) activity in brain and testicular tissues. Chronic Cd administration resulted in a decline in glutathione (GSH) content and a decrease of superoxide dismutase (SOD) and glutathione S-transferase (GST) activity in both organs. Administration of beta-carotene (250 IU/kg i.g.) concurrent with Cd ameliorated Cd-induced LPO. The brain and testicular antioxidants, SOD, GST, and GSH, decreased by Cd alone, were restored by beta-carotene cotreatment. Concurrent treatment with beta-carotene also ameliorated the decrease in ATPase activity and the increase in LDH activity in brain and testis of Cd-treated rats, indicating a prophylactic action of beta-carotene on Cd toxicity. Therefore, the results indicate that the nutritional antioxidant beta-carotene ameliorated oxidative stress and the loss of cellular antioxidants and suggest that beta-carotene may control Cd-induced brain and testicular toxicity.  相似文献   

9.
This study investigated the effects of Maillard reaction products (MRPs) on the oxidative cleavage and polymerization of BSA (bovine serum albumin) in an aqueous system. In L-ascorbic acid (AsA) and Cu(II) or Fe(III) reaction system, 50-60% of BSA was cleaved under physiological conditions (37 degrees C, pH 7.2). The oxidative cleavage induced by AsA-Cu(II) system was suppressed to the extent of 32-86% by model melanoidins or brown pigments from amino acids and foodstuffs. In the AsA-Fe(III) system, the oxidative cleavage was inhibited to the extent of 45-93% by melanoidins and brown pigments. However, this cleavage was promoted by amino acid Amadori rearrangement products and brown pigment from soy paste. Therefore, MRPs show both suppression and promotion activity on oxidative cleavage of BSA in the system of AsA and a transition metal. The quantity of Amadori rearrangement moiety (ARM) in melanoidins from Lysine and brown pigments molecules from foods was also measured. From these data, it was estimated that the suppression and/or promotion of oxidative cleavage of BSA did not only depend on the quantity of ARM, but also depended on the chemical structure of ARM in melanoidins or brown pigments.  相似文献   

10.
Two new products from the incubation of beta-carotene with intestinal mucosa homogenates of human, monkey, ferret, and rat were isolated using high-performance liquid chromatography (HPLC). Identification by comparing retention times in HPLC, by monitoring ultraviolet/visible spectra, by reduction to corresponding alcohol, by oxime formation, and by mass spectrometry demonstrated that they are beta-apo-13-carotenone and beta-apo-14'-carotenal. These compounds were not found in incubations done without intestinal homogenates or with disulfiram as an inhibitor. Under standard incubation conditions, these products increased linearly for 60 min and up to a protein concentration of 1.5 mg/mL and increased along with increasing concentrations of beta-carotene. Therefore, they are enzymatic cleavage products from beta-carotene. The formation of the beta-apo-13-carotenone and beta-apo-14'-carotenal provides direct evidence for an enzymatic excentric cleavage mechanism.  相似文献   

11.
The MUC1 transmembrane glycoprotein is aberrantly overexpressed in diverse human carcinomas and has been shown to inhibit apoptosis induced by genotoxic agents. In the present work, we report that MUC1 binds to and activates JNK1, an important member of the mitogen-activated protein kinases (MAPK) superfamily. The physical interaction between MUC1 cytoplasmic domain (MUC1-CD) and JNK1 was established by GST-pull-down assay in vitro and co-immunoprecipitation assay in vivo. We show that MUC1 activates JNK1 and inhibits cisplatin-induced apoptosis in human colon cancer HCT116 cells. Pharmacological inhibition of JNK or knockdown of JNK significantly reduces the ability of MUC1 to inhibit cisplatin-induced apoptosis. Together, our data indicate that MUC1 can inhibit apoptosis via activating JNK1 pathway in response to genotoxic anticancer agents.  相似文献   

12.
RNA damage and surveillance under oxidative stress   总被引:1,自引:0,他引:1  
Li Z  Wu J  Deleo CJ 《IUBMB life》2006,58(10):581-588
  相似文献   

13.
14.
tRNA cleavage is a conserved response to oxidative stress in eukaryotes   总被引:4,自引:0,他引:4  
Recent results have identified a diversity of small RNAs in a wide range of organisms. In this work, we demonstrate that Saccharomyces cerevisiae contains a small RNA population consisting primarily of tRNA halves and rRNA fragments. Both 5′ and 3′ fragments of tRNAs are detectable by Northern blot analysis, suggesting a process of endonucleolytic cleavage. tRNA and rRNA fragment production in yeast is most pronounced during oxidative stress conditions, especially during entry into stationary phase. Similar tRNA fragments are also observed in human cell lines and in plants during oxidative stress. These results demonstrate that tRNA cleavage is a conserved aspect of the response to oxidative stress.  相似文献   

15.
Data on the structure, functions, regulation of activity, and expression of cytosolic and mitochondrial aconitate hydratase isoenzymes of mammals are reviewed. The role of aconitate hydratase and structurally similar iron-regulatory protein in maintenance of homeostasis of cell iron is described. Information on modifications of the aconitate hydratase molecule and changes in expression under oxidative stress is generalized. The role of aconitate hydratase in the pathogenesis of some diseases is considered.  相似文献   

16.
Ferryl heme proteins may play a major role in vivo under certain pathological conditions. Catecholestrogens, the estradiol-derived metabolites, can act either as antioxidants or pro-oxidants in iron-dependent systems. The aim of the present work was (1) to determine the effects of ferrylmyoglobin on hepatocyte cytotoxicity, and (2) to assess the pro/antioxidant potential of a series of estrogens (phenolic, catecholic and stilbene-derived) against ferrylmyoglobin induced lipid peroxidation in rat hepatocytes. Cells were exposed to metmyoglobin plus hydrogen peroxide to form ferrylmyoglobin in the presence of the transition metal chelator diethylentriaminepentaacetic acid. Results showed that ferrylmyoglobin induced an initial oxidative stress, mainly reflected in an early lipid peroxidation and further decrease in GSH and ATP. However, cells gradually adapted to this situation, by recovering the endogenous ATP and GSH levels at longer incubation times. Phenolic and stilbene-derived estrogens inhibited ferrylmyoglobin-induced lipid peroxidation to different degrees: diethylstilbestrol>estradiol>resveratrol. Catecholestrogens at concentrations higher than 1 microM also inhibited lipid peroxidation with similar efficacy. The ability of estrogens to reduce ferrylmyoglobin to metmyoglobin may account for their antioxidant activity. In contrast, physiological concentrations (100 pM-100 nM) of the catecholestrogens exerted pro-oxidant activities, 4-hydroxyestradiol being more potent than 2-hydroxyestradiol. The implications of these interactions should be considered in situations where local myoglobin or hemoglobin microbleeding takes place.  相似文献   

17.
The interaction between glutathione-containing dinitrosyl iron complexes and superoxide radicals has been studied under the conditions of superoxide radical generation in mitochondria and in a model system xanthine-xanthine oxidase. It has been shown that both superoxide radical and hydroxyl radical are involved in the destruction of dinitrosyl iron complexes. At the same time, iron contained in dinitrosyl iron complex, apparently, does not catalyze the decomposition of hydrogen peroxide with the formation of hydroxyl radical. It has been found that dinitrosyl iron complexes with different anion ligands inhibit effectively the formation of phenoxyl probucol radical in a hemin-H2O2 a system. In this process, different components of the dinitrosyl iron complexes take part in the antioxidant action of these complexes.  相似文献   

18.
Supplementation of rats' diet with beta-carotene or biomass of carotene producing yeast Phaffia rhodozyma caused a decrease of aminotransferases in the blood serum as well as a decrease of lipid peroxidation products and protein carbonil groups in the liver, brain and myocardium tissues of animals treated with tetrachloromethane. When compared to the control group the activity of superoxide dismutase, catalase and glutathione peroxidase in the liver of carotene fed rats were respectively 1.6, 2.2, and 1.5-fold higher. Thus, these supplements to standard diet slow down development of tetrachlorometane mediated oxidative stress in rats.  相似文献   

19.
In the present study, we find that cyclopentenone prostaglandins (PGs) of the J(2) series, naturally occurring derivatives of PGD(2), are potential inducers of intracellular oxidative stress that mediates cell degeneration. Based on an extensive screening of diverse chemical agents on induction of intracellular production of reactive oxygen species (ROS), we found that the cyclopentenone PGs, such as PGA(2), PGJ(2), Delta(12)-PGJ(2), and 15-deoxy-Delta(12,14)-PGJ(2), showed the most potent pro-oxidant effect on SH-SY5Y human neuroblastoma cells. As the intracellular events that mediate the PG cytotoxicity, we observed (i) the cellular redox alteration represented by depletion of antioxidant defenses, such as glutathione and glutathione peroxidase; (ii) a transient decrease in the mitochondrial membrane potential (Deltapsi); (iii) the production of protein-bound lipid peroxidation products, such as acrolein and 4-hydroxy-2-nonenal; and (iv) the accumulation of ubiquitinated proteins. These events correlated well with the reduction in cell viability. In addition, the thiol compound, N-acetylcysteine, could significantly inhibit the PG-induced ROS production, thereby preventing cytotoxicity, suggesting that the redox alteration is closely related to the pro-oxidant effect of cyclopentenone PGs. More strikingly, the lipid peroxidation end products, acrolein and 4-hydroxy-2-nonenal, detected in the PG-treated cells potently induced the ROS production, which was accompanied by the accumulation of ubiquitinated proteins and cell death, suggesting that the membrane lipid peroxidation products may represent one of the causative factors that potentiate the cytotoxic effect of cyclopentenone PGs by accelerating intracellular oxidative stress. These data suggest that the intracellular oxidative stress, represented by ROS production/lipid peroxidation and redox alteration, may underlie the well documented biological effects, such as antiproliferative and antitumor activities, of cyclopentenone PGs.  相似文献   

20.
This study was conducted to determine if naturally occurring cell constituents could themselves cause mutation. All the bases and their corresponding nucleosides have been shown to produce chromosome damage in P338 mouse lymphoma and Chinese hamster ovary cells in culture. In addition thymidine has produced an increase in V79 cells resistant to 8-azaguanine and ouabain. Such damage probably arises as a result of imbalanced DNA-precursor pools. Thus mutagenic events may arise by mechanisms unrelated to direct alterations of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号