首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe the application of molecular biological techniques to estimate eukaryotic diversity (primarily fungi, algae, and protists) in Antarctic soils across a latitudinal and environmental gradient between approximately 60 and 87 degrees S. The data were used to (i) test the hypothesis that diversity would decrease with increasing southerly latitude and environmental severity, as is generally claimed for "higher" faunal and plant groups, and (ii) investigate the level of endemicity displayed in different taxonomic groups. Only limited support was obtained for a systematic decrease in diversity with latitude, and then only at the level of a gross comparison between maritime (Antarctic Peninsula/Scotia Arc) and continental Antarctic sites. While the most southerly continental Antarctic site was three to four times less diverse than all maritime sites, there was no evidence for a trend of decreasing diversity across the entire range of the maritime Antarctic (60 to 72 degrees S). Rather, we found the reverse pattern, with highest diversity at sites on Alexander Island (ca. 72 degrees S), at the southern limit of the maritime Antarctic. The very limited overlap found between the eukaryotic biota of the different study sites, combined with their generally low relatedness to existing sequence databases, indicates a high level of Antarctic site isolation and possibly endemicity, a pattern not consistent with similar studies on other continents.  相似文献   

2.
It has long been maintained that the majority of terrestrial Antarctic species are relatively recent, post last glacial maximum, arrivals with perhaps a few microbial or protozoan taxa being substantially older. Recent studies have questioned this 'recolonization hypothesis', though the range of taxa examined has been limited. Here, we present the first large-scale study for mites, one of two dominant terrestrial arthropod groups in the region. Specifically, we provide a broad-scale molecular phylogeny of a biologically significant group of ameronothroid mites from across the maritime and sub-Antarctic regions. Applying different dating approaches, we show that divergences among the ameronothroid mite genera Podacarus, Alaskozetes and Halozetes significantly predate the Pleistocene and provide evidence of independent dispersals across the Antarctic Polar Front. Our data add to a growing body of evidence demonstrating that many taxa have survived glaciation of the Antarctic continent and the sub-Antarctic islands. Moreover, they also provide evidence of a relatively uncommon trend of dispersals from islands to continental mainlands. Within the ameronothroid mites, two distinct clades with specific habitat preferences (marine intertidal versus terrestrial/supralittoral) exist, supporting a model of within-habitat speciation rather than colonization from marine refugia to terrestrial habitats. The present results provide additional impetus for a search for terrestrial refugia in an area previously thought to have lacked ice-free ground during glacial maxima.  相似文献   

3.
We describe the application of molecular biological techniques to estimate eukaryotic diversity (primarily fungi, algae, and protists) in Antarctic soils across a latitudinal and environmental gradient between approximately 60 and 87°S. The data were used to (i) test the hypothesis that diversity would decrease with increasing southerly latitude and environmental severity, as is generally claimed for “higher” faunal and plant groups, and (ii) investigate the level of endemicity displayed in different taxonomic groups. Only limited support was obtained for a systematic decrease in diversity with latitude, and then only at the level of a gross comparison between maritime (Antarctic Peninsula/Scotia Arc) and continental Antarctic sites. While the most southerly continental Antarctic site was three to four times less diverse than all maritime sites, there was no evidence for a trend of decreasing diversity across the entire range of the maritime Antarctic (60 to 72°S). Rather, we found the reverse pattern, with highest diversity at sites on Alexander Island (ca. 72°S), at the southern limit of the maritime Antarctic. The very limited overlap found between the eukaryotic biota of the different study sites, combined with their generally low relatedness to existing sequence databases, indicates a high level of Antarctic site isolation and possibly endemicity, a pattern not consistent with similar studies on other continents.  相似文献   

4.
Peter Convey 《Oecologia》1994,100(1-2):45-53
A comparison is made of the reproductive effort (RE), considered as the investment in sporophyte relative to gametophyte biomass, of eight species of moss occurring at sub-and maritime Antarctic sites. Six of the species showed smaller sporophytes and game-tophytes at the climatically more extreme maritime Antaretic sites and one species showed no size difference between regions. The remaining species, although showing no regional difference, showed some evidence of a reverse pattern, with higher altitude samples having greater biomass than lower altitude samples. Spore counts indicated a measure of compensation in maritime Antarctic samples, with no significant decrease in spore output in several species despite smaller sporophyte biomass. The relationship between sporophyte (S) and gametophyte (G) biomass within samples was described by an allometric curve (S=aG b ) which gave a better fit than a straight line for six species. This form of model allows comparisons of patterns of RE to be made between samples with non-or partially overlapping size distributions, even when the relationship involves size-dependence. An allometric curve was not appropriate for describing samples of one species (Andreaea regularis), and insufficient data were available to identify any relationship in Polytrichum alpinum. The exponent (b) differed between species, but there were no statistically significant differences between exponents from samples of the same species. Samples of two species could further be described by the same coefficient (a), indicating that they lie on the same curve. However, samples of three species from sub-Antarctic South Georgia gave significantly higher coefficients, indicating increased RE relative to maritime Antarctic populations.  相似文献   

5.
Diversity and biogeography of the Antarctic flora   总被引:1,自引:0,他引:1  
Aim To establish how well the terrestrial flora of the Antarctic has been sampled, how well the flora is known, and to determine the major patterns in diversity and biogeography. Location Antarctica south of 60° S, together with the South Sandwich Islands, but excluding South Georgia, Bouvetøya and the periantarctic islands. Methods Plant occurrence data were collated from herbarium specimens and literature records, and assembled into the Antarctic Plant Database. Distributional patterns were analysed using a geographic information system. Biogeographical patterns were determined with a variety of multivariate statistics. Results Plants have been recorded from throughout the Antarctic, including all latitudes between 60° S and 86° S. Species richness declines with latitude along the Antarctic Peninsula, but there was no evidence for a similar cline in Victoria Land and the Transantarctic mountains. Multi‐dimensional scaling ordinations showed that the species compositions of the South Orkney, South Shetland Islands and the north‐western Antarctic Peninsula are very similar to each other, as are the floras of different regions in continental Antarctica. They also suggest, however, that the eastern Antarctic Peninsula flora is more similar to the flora of the southern Antarctic Peninsula than to the continental flora (with which it has traditionally been linked). The South Sandwich Islands have a flora that is very dissimilar to that in all Antarctic regions, probably because of their isolation and volcanic nature. Main conclusions The Antarctic flora has been reasonably well sampled, but certain areas require further floristic surveys. Available data do, however, allow for a number of robust conclusions. A diversity gradient exists along the Antarctic Peninsula, with fewer species (but not fewer higher taxa) at higher latitudes. Multi‐dimensional scaling ordination suggests three major floral provinces within Antarctica: northern maritime, southern maritime, and continental. Patterns of endemism suggest that a proportion of the lichen flora may have an ancient vicariant distribution, while most bryophytes are more recent colonists.  相似文献   

6.
P. Convey 《Polar Biology》1994,14(1):65-69
Rates of dark respiration (DR), gross photosynthesis (GPS) and net photosynthesis (NPS) were investigated for 14 species of moss from a maritime Antarctic locality. The rates found were similar to those reported in studies of temperate, alpine and Arctic species, indicating no physiological specialisation to the Antarctic environment. There was no relationship between the habitat occupied by a species (hydric, mesic, xeric) and physiological measures. There was, however, a loose correlation between NPS and a species' ecology or reproductive behaviour in the maritime Antarctic — species with high NPS being either colonists or those that show high and regular investment in sporophyte production.  相似文献   

7.
Throughout the Quaternary, the continental-based Antarctic ice sheets expanded and contracted repeatedly. Evidence suggests that during glacial maxima, grounded ice eliminated most benthic (bottom-dwelling) fauna across the Antarctic continental shelf. However, paleontological and molecular evidence indicates most extant Antarctica benthic taxa have persisted in situ throughout the Quaternary. Where and how the Antarctic benthic fauna survived throughout repeated glacial maxima remain mostly hypothesised. If understood, this would provide valuable insights into the ecology and evolution of Southern Ocean biota over geological timescales. Here we synthesised and appraised recent studies and presented an approach to demonstrate how genetic data can be effective in identifying where and how Antarctic benthic fauna survived glacial periods. We first examined the geological and ecological evidence for how glacial periods influenced past species demography in order to provide testable frameworks for future studies. We outlined past ice-free areas from Antarctic ice sheet reconstructions that could serve as glacial refugia and discussed how benthic fauna with pelagic or non-pelagic dispersal strategies moved into and out of glacial refugia. We also reviewed current molecular studies and collated proposed locations of Southern Ocean glacial refugia on the continental shelf around Antarctica, in the deep sea, and around sub-Antarctic islands. Interestingly, the proposed glacial refugia based on molecular data generally do not correspond to the ice-free areas identified by Antarctic ice sheet reconstructions. The potential biases in sampling and in the choice of molecular markers in current literature are discussed, along with the future directions for employing testable frameworks and genomic methods in Southern Ocean molecular studies. Continued data syntheses will elucidate greater understanding of where and how Southern Ocean benthic fauna persisted throughout glacial periods and provide insights into their resilience against climate changes in the future.  相似文献   

8.
In a current article in the Journal of Vegetation Science, Casanova‐Katny et al. addressed a comment about an article by Molina‐Montenegro et al., which demonstrated the climate modification induced by the macrolichen Usnea antarctica and its role as facilitator. They provided useful corrections concerning species identification and pointed out several issues that, in their view, weakened our study. They indicated that the role of U. antarctica as a facilitative species in the maritime Antarctica is merely philosophical and has no ecological relevance. In this commentary, we argue why these critiques are unsubstantial, and provide evidence that the macrolichen can modify the microclimate, ameliorating the harsh conditions prevailing in Antarctica, establishing positive interactions and eventually facilitating vascular species. Thus, the macrolichen U. antarctica would act as a ‘nurse species’, playing a key role in structuring the maritime Antarctic plant community.  相似文献   

9.
To date over 1 000 non-lichenized fungal species have been recorded by collection or isolation from Antarctica, and additional taxa are now being identified by molecular studies. The number and variety of species recorded so far suggest that the fungi may be the most diverse biota in the Antarctic, and the additional taxa identified by molecular surveys suggest that the true diversity may be far greater than is currently estimated. Fungi occupy many different ecological niches in the Antarctic, and their significance in these niches is only poorly understood. The majority of species described from the region have been identified as members of broadly cosmopolitan groups, but there is some evidence for both endemic strains and populations. This review brings together the current broad systematic and ecological findings for the non-lichenized Antarctic fungi.  相似文献   

10.
The cyanobacterial flora of maritime Antarctica appears to contain many endemic species and only few cosmopolitan or wider-distributed taxa. Several morphospecies that have been erroneously identified in the past following available keys from temperate or tropical zones belong in fact to little-known and poorly described Antarctic cyanobacteria. Here we describe the taxonomy of one such example, the colonial species Gloeocapsopsis aurea . This cyanobacterium produces irregular, packet-like colonies that form black mats, films and crusts. Based on analysis of algal samples from Punta Cierva (Antarctic Peninsula) and King George Island (South Shetland Islands), this taxon is widely distributed in coastal, deglaciated areas of the maritime Antarctic. It is an important, often dominating, ecotype, mostly colonising irrigated rocks but also found in a variety of other aquatic and semi-aquatic habitats under a wide range of conductivities, pH and nutrient regimes.  相似文献   

11.
Extensive material of Caloplaca from Arctic and Antarctic regions has been critically examined. A list of 49 species is presented for Arctic regions. They are presumed to have a more or less circumpolar distribution. Twenty-two species are listed from the Antarctic region, but about ten more, probably undescribed species, are present there. About one-third of the species in the Antarctic region are bipolar or widespread in cold regions; these include mainly terricolous and muscicolous species and none of them are maritime. It is assumed that migration of the bipolar or cosmopolitan species has taken place along the Andean mountain chain, whereas the maritime polar species have evolved separately in the two hemispheres. The Caloplaca species of the Antarctic region are provisionally assigned to the following distribution types: continental Antarctic, western Antarctic, insul-Antarctic and sub-Antarctic. Caloplaca exsecuta, C. saxicola and C. phaeocarpella are recorded as new to the Antarctic region. Caloplaca johnstonii (Dodge) Søchting & Olech, comb, nov., is established as the correct name of C. tenuis Øvstedal.  相似文献   

12.
Vascular plants as bioindicators of regional warming in Antarctica   总被引:11,自引:0,他引:11  
R. I. Lewis Smith 《Oecologia》1994,99(3-4):322-328
Monitoring selected populations of the only two native Antarctic vascular plant species (Colobanthus quitensis andDeschampsia antarctica) over a 27-year period has revealed a significant and relatively rapid increase in numbers of individuals and populations at two widely separated localities in the maritime Antarctic. There is strong evidence that this increase is a response to a warming trend in summer air temperatures, which has been evident throughout the region since the late 1940s, enhancing seed maturation, germination and seedling survival. This study provides the only known long-term monitoring data for any terrestrial organisms in Antarc-tica. Because their response to ameliorating conditions is more rapid than that of the dominant cryptogamic groups, Antarctic phanerogams may be useful bioindicators of climate change in West Antarctica.  相似文献   

13.
Since the Antarctic Treaty was negotiated in 1959, there have been substantial developments in the law of the sea. One of the most significant developments has been the recognition granted to coastal state entitlements to claim a range of offshore maritime areas. Yet, one of the principal aims of the Antarctic Treaty was to eliminate sovereignty disputes between territorial claimants, and the treaty placed limitations on the assertion of new claims. Nevertheless, most Antarctic territorial claimants have asserted some form of Antarctic maritime claim. This article particularly considers Australia's position toward maritime claims offshore the Australian Antarctic Territory (AAT). It reviews the limitations imposed by the Antarctic Treaty, the difficulties in determining baselines in Antarctica, Australia's practice in declaring Antarctic maritime claims, and the potential range of maritime boundaries that Australia may one day have to delimit with neighboring states in the Southern Ocean.  相似文献   

14.
Antarctic terrestrial ecosystems experience some of the most extreme growth conditions on Earth and are characterized by extreme aridity and subzero temperatures. Antarctic vegetation is therefore at the physiological limits of survival and, as a consequence, even slight changes to growth conditions are likely to have a large impact, rendering Antarctic terrestrial communities sensitive to climate change. Climate change is predicted to affect the high‐latitude regions first and most severely. In recent decades, the Antarctic has undergone significant environmental change, including the largest increases in ultraviolet‐B (UV‐B; 290–320 nm) radiation levels in the world and, in the maritime region at least, significant temperature increases. This review describes the current evidence for environmental change in Antarctica, and the impacts of this change on the terrestrial vegetation. This is largely restricted to cryptogams, such as bryophytes, lichens and algae; only two vascular plant species occur in the Antarctic, both restricted to the maritime region. We review the range of ecological and physiological consequences of increasing UV‐B radiation levels, and of changes in temperature, water relations and nutrient availability. It is clear that climate change is already affecting the Antarctic terrestrial vegetation, and significant impacts are likely to continue in the future. We conclude that, in order to gain a better understanding of the complex dynamics of this important system, there is a need for more manipulative, long‐term field experiments designed to address the impacts of changes in multiple abiotic factors on the Antarctic flora.  相似文献   

15.
In this study, a molecular phylogenetic hypothesis for 16 species of serolid isopods (Crustacea, Isopoda, Serolidae) from Antarctic waters, the deep sea, South America, and Australia is presented. The genes used are a 500-bp fragment of the mitochondrial LSU rRNA gene and a 700-bp fragment located in the variable region V4 of the nuclear SSU rRNA gene. The species composition and monophyly of morphologically defined genera of which several members were available are confirmed by the molecular data (Ceratoserolis, Spinoserolis, and Cuspidoserolis). The molecular data also support the redefinition of Frontoserolis s.l. and Serolella and the erection of the new genera Septemserolis and Paraserolis, as proposed by W]agele. The relationship among several genera is resolved differently in the molecular hypothesis than in the two existing morphological hypotheses, however. The molecular phylogeny may have important consequences for understanding the biogeography of the Serolidae, indicating that all Antarctic species in this study form a monophyletic group which has probably derived from species with closest extant relatives in South America. All 3 species included in this study living today in deep waters (>2000 m) of the Southern Ocean are most closely related to species living on the Antarctic shelf, so that parallel colonization of the deep sea by way of polar submergence can be reconstructed. In this study, a V4 expansion segment is reported which exceeds the longest crustacean sequences known until now by more than 270 bp. Although the V4 expansion segment has proven useful for phylogenetic purposes in this study, there is circumstantial evidence that its mechanism of evolution may depend not only on inheritance of single-site substitutions, making its routine use in phylogenetic studies potentially dangerous.  相似文献   

16.
W. Block    P. Convey 《Journal of Zoology》1995,236(3):431-449
This paper is dedicated to the late Nigel Bonner, who as Head of the Life Sciences Division at British Antarctic Survey, encouraged and supported this research with his characteristic enthusiasm.
The cryptostigmatid mite Alaskozetes antarcticus (Michael) is a dominant member of many terrestrial communities in the maritime Antarctic, where it survives extreme temperatures, short cold summers, numerous freeze-thaw cycles, desiccating conditions and a limited season for growth and reproduction. However, examination of features of its biology, from morphology, through life-history strategy to physiology, indicate very little specialization to the Antarctic environment. Alaskozetes antarcticus is a herbivore/detritivore, typical of the Cryptostigmata in general, with low feeding and growth rates, long life span and low reproductive output. Physiological specializations exist in the form of low enzyme activation energies and elevated metabolic rates at low temperatures when compared with temperate species, and associated low optimum temperatures for activity, feeding and growth. Growth rates comparable with temperate species are achieved in the field, with an extended life cycle of five years or more as a result of the short growing season, and the ability of all life stages to overwinter equally successfully. Overwintering survival, involving supercooling enhanced by the use of antifreezes such as glycerol, although initially described in Antarctic species, is now known to be characteristic of many temperate relatives, so it is not a specific adaptation to the polar environment. The obvious success of A. antarcticus in maritime Antarctic terrestrial environments must be attributed to a combination of several features characteristic of the Cryptostigmata in general, rather than to specific polar adaptations.  相似文献   

17.
Quaternary glaciations in Antarctica drastically modified geographical ranges and population sizes of marine benthic invertebrates and thus affected the amount and distribution of intraspecific genetic variation. Here, we present new genetic information in the Antarctic limpet Nacella concinna, a dominant Antarctic benthic species along shallow ice‐free rocky ecosystems. We examined the patterns of genetic diversity and structure in this broadcast spawner along maritime Antarctica and from the peri‐Antarctic island of South Georgia. Genetic analyses showed that N. concinna represents a single panmictic unit in maritime Antarctic. Low levels of genetic diversity characterized this population; its median‐joining haplotype network revealed a typical star‐like topology with a short genealogy and a dominant haplotype broadly distributed. As previously reported with nuclear markers, we detected significant genetic differentiation between South Georgia Island and maritime Antarctica populations. Higher levels of genetic diversity, a more expanded genealogy and the presence of more private haplotypes support the hypothesis of glacial persistence in this peri‐Antarctic island. Bayesian Skyline plot and mismatch distribution analyses recognized an older demographic history in South Georgia. Approximate Bayesian computations did not support the persistence of N. concinna along maritime Antarctica during the last glacial period, but indicated the resilience of the species in peri‐Antarctic refugia (South Georgia Island). We proposed a model of Quaternary Biogeography for Antarctic marine benthic invertebrates with shallow and narrow bathymetric ranges including (i) extinction of maritime Antarctic populations during glacial periods; (ii) persistence of populations in peri‐Antarctic refugia; and (iii) recolonization of maritime Antarctica following the deglaciation process.  相似文献   

18.
19.
Two species of flowering plant of Fuegian montane provenance have been discovered on Deception Island in the maritime Antarctic, 950 km south of South America. Four individuals of Nassauvia magellanica and one of Gamochaeta nivalis (both Asteraceae) are growing robustly and in close proximity of each other on dry ash and scoria soil near a ruined whaling station which, in recent years, has been frequently visited by large numbers of ship-borne tourists. The Protocol on Environmental Protection to the Antarctic Treaty and the Management Plan for the island, designated an Antarctic Specially Managed Area, provide strict regulations for the conduct of visitors to this site and precautions against the accidental introduction of non-indigenous species. While their establishment on this remote volcanic island may have been anthropogenically mediated, natural immigration cannot be ruled out as both species produce seed adapted for wind-dispersal in their native Tierra del Fuego. The ecological consequences if one or both of these aliens spreads beyond their present restricted location are considered. While determined efforts are being made to implement rigorous biosecurity measures in Antarctica, current Antarctic Treaty policy on dealing with colonizing invasive alien species is indecisive and requires urgent action and clear recommendations.  相似文献   

20.
The ability to understand and predict the effects of environmental stress on biodiversity is becoming increasingly important in our changing environment. Antarctic marine species are some of the most stenothermal on the planet and many inhabit the waters off the Antarctic Peninsula which is one of the areas where there is rapid regional climate change. Therefore these animals are highly vulnerable to changing environmental temperatures and clearly we need to understand the complexities of their response, not just at the individual species level, but also the implications for the ecosystem as a whole. Heat shock proteins have a long history of use in studies of organism stress responses and have frequently been proposed as potential universal molecular biomarkers, especially for non-model species. In this mini-review, the heat shock response and heat shock proteins (specifically the HSP70 family) are examined in Antarctic marine species alongside their physiological capabilities and limits to answer a series of questions: do these animals have a heat shock response which includes the expression of HSP70 genes? What is the relationship between their heat shock response and physiological capabilities? Can HSP70 genes be used as molecular biomarkers for these species?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号