首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ungerminated pumpkin (Cucurbita moschata Poir.) cotyledons contained 30 % of their dry weight as lipid and 26 % as protein, of which 93 % was globulin. There was a rapid degradation of these reserves 4 to 8 days after planting when the cotyledons had their maximum metabolic activity. About half of the mole percent of amino acids found in the globulin reserve was in arginine, glutamate, aspartate, and their amides. The cotyledons had a large soluble pool of arginine, glutamine, glutamate, and leucine. Most amino acids increased steadily in amount in the cotyledons during germination, except glutamine, ornithine, alanine, serine, glycine, and γ-aminobutyrate and these appeared in large amounts in the translocation stream to the axis tissue. Little arginine or proline was translocated. By 10 days, when translocation had decreased, amino acids accumulated. Ornithine, γ-aminobutyrate, and aspartate were rapidly utilized in the hypocotyl, while glutamine, glycine, and alanine accumulated there. Cysteine and methionine levels were low in the reserve, trans-location stream and soluble fractions. γ-Aminobutyrate-U?14C injected into cotyledons or incubated with hypocotyls was utilized in a similar fashion. The label appeared in citric acid cycle acids and in the amino acids closely related to this cycle, but the bulk of the label appeared in CO2. The labeling pattern suggests that γ-aminobutyrate was utilized via succinate, and thus entered the citric acid cycle. A close relationship between arginine, ornithine, glutamate, and γ-aminobutyrate exists in the cotyledon with all but arginine being translocated rapidly to the axis tissue where these amino acids are rapidly metabolized.  相似文献   

2.
After imbibition of peanut seeds, the concentration of free amino acids in cotyledons increases probably due to hydrolysis of reserve proteins. That increase was accompanied by a stimulation of aspartate aminotransferase (AAT, EC 2.6.1.1) activity especially pronounced between first and sixth day of imbibition. Peanut cotyledons contained several AAT isoforms which could be visualized after polyacrylamide gel electrophoresis (PAGE). Native PAGE of extracts from cotyledons of dry seeds demonstrate three active bands. The intensity of these bands increased reaching a maximum after 6th day of imbibition. An additional band appears transientely on 6th day, but is not visible after 14 days of incubation. A fastest band appears on this latter day. If germination takes place under hypersalinity conditions. the AAT activity severely diminishes and the free amino acid concentration raises. The possibilities of different types of AAT regulation are discussed.  相似文献   

3.
萌发绿豆子叶自然衰老过程中可溶性蛋白质含量一直下降;从衰老开始到衰老前期,总游离氨基酸含量明显上升;但游离氨基酸各组分在子叶衰老期间的变化趋势并不相同。~3H-亮氨酸掺入蛋白质试验和多聚核糖体的相对量及其与总核糖体的比值(P/T)测定都证明在子叶衰老前期有蛋白质的新合成。子叶衰老期间。氨肽酶活性明显降低;而以酪蛋白为底物的蛋白水解酶活性却急剧上升,承担着催化蛋白质降解的主要功能。  相似文献   

4.
Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.  相似文献   

5.
The influence of the embryonic axis and cytokinins (CKs) onreserve mobilization has been examined in yellow lupin (Lupinusluteus L. cv. JSG 6167) seed during germination and during earlygrowth for up to 9 d in the dark. The study included determinationof starch, soluble sugars, proteins, and amino acid content.Amylolytic and proteolytic enzyme activity was also measuredin untreated cotyledons with intact embryo (attached) or detachedcotyledons (embryo removed), and in detached cotyledons followingtreatment with CKs namely, dihydrozeatin, (diH)Z, and 6-benzylaminopurine,BAP. Generally, the detached cotyledons showed reduced mobilizationand decreased enzymatic activity in comparison to attached cotyledons,indicating the importance of the embryonic axis in this process.However, a rise in protease activity and free amino acid contentwas detected in 9-d-old detached cotyledons suggesting thatthe end products do not necessarily inhibit enzyme activity.While (diH)Z was partially effective in inducing reserve mobilizationand enzymatic activity in detached cotyledons, the effect ofBAP was more pronounced and appeared to replace the embryonicaxis. The embryonic axis of this species has recently been shownto synthesize CKs which are transported to the cotyledons, arehighly stabe and induce cotyledon expansion and chlorophyllsynthesis. The results of the present investigation and previousstudies from this laboratory collectively indicate that theregulation of reserve mobilization in yellow lupin seeds appearsto be mediated, at least in part, by a stimulus, probably aCK, emanating from the embryonic axis. Key words: Lupinus luteus, cytokinins, benzylaminopurine, dihydrozeatin, embryonic axis, lupin seeds, reserve mobilization  相似文献   

6.
The increase in salinity of the medium resulted in the decrease α-amylase and protease activities in all cotton varieties tested, however it was more pronounced in NIAB-86. Decrease in concentration of reducing and non-reducing sugars, slower mobilization of reserve protein and reduced amino acidslevels were observed with increase in salinity levels. However, varieties K-115 showed better performance than others. The variety K-115 also had a capacity to mobilization and had higher levels of sugars, total free amino acids and reserve protein during germination and early seedling growth stages. However, varieties K-115 showed better performance than others. Variety K-115 showed highest germination followed by NIAB-Karishma and NIAB-86. The variety K-115 also had a capacity to mobilization and had higher levels of total free amino acids and less reserve protein during germination and early seedling growth stages.  相似文献   

7.
Seedling establishment in saline conditions is crucial for plant survival and productivity. This study was performed to elucidate the biochemical and physiological mechanisms involved with the recovery and establishment of cashew seedlings subjected to salinity. The changes in the Na+ levels and K/Na ratios, associated with relative water content, indicated that osmotic effects were more important than salt toxicity in the inhibition of seedling growth and cotyledonary protein mobilization. Salinity (50 mM NaCl) induced a strong delay in protein breakdown and amino acid accumulation in cotyledons, and this effect was closely related to azocaseinolytic and protease activities. In parallel, proline and free amino acids accumulated in the leaves whereas the protein content decreased. Assays with specific inhibitors indicated that the most important proteases in cotyledons were of serine, cysteine and aspartic types. Proteomic analysis revealed that most of the cashew reserve proteins are 11S globulin-type and that these proteins were similarly degraded under salinity. In the late establishment phase, the salt-treated seedlings displayed an unexpected recovery in terms of leaf growth and N mobilization from cotyledon to leaves. This recovery coordinately involved a great leaf expansion, decreased amino acid content and increased protein synthesis in leaves. This response occurred in parallel with a prominent induction in the cotyledon proteolytic activity. Altogether, these data suggest that a source–sink mechanism involving leaf growth and protein synthesis may have acted as an important sink for reserve mobilization contributing to the seedling establishment under salinity. The amino acids that accumulated in the leaves may have exerted negative feedback to act as a signal for the induction of protease activity in the cotyledon. Overall, these mechanisms employed by cashew seedlings may be part of an adaptive process for the efficient rescue of cotyledonary proteins, as the cashew species originates from an environment with N-poor soil and high salinity.  相似文献   

8.
The glycoprotein nature of legumin and vicilin, the reserve globulins in the cotyledons of Pisum sativum was studied. Legumin from mature seed was found to contain 1% neutral sugars (mannose and glucose) and 0.1% amino sugar (glucosamine), whereas vicilin contained 0.3% neutral sugar (mannose) and 0.2% amino sugar (glucosamine). On the basis of the incorporation of 14C-labeled glucosamine, it appeared that not all of the component subunits of the reserve proteins are glycosylated to the same extent. In addition, it has been established that glycosylation occurs after peptide synthesis. During seed development there was a change in neutral sugars and amino sugar ratio in vicilin. During germination, the neutral sugars and the amino sugar content of the glycoproteins declined. These findings are discussed in relation to the synthesis and degradation of the glycosyl component of the glycoproteins.  相似文献   

9.
We carried out in vitro feeding experiments using sunflower as a model to differentiate the modulatory effects of metabolites (sucrose and glutamine) and hormones (gibberellic acid and abscisic acid) on reserve mobilization, metabolite partitioning, and key enzyme activities. Exogenous sucrose negatively not only modulated the mobilization of carbon reserves (oils and starch), but it also delayed the degradation of nitrogen reserves (storage proteins) in the cotyledons. Similarly, exogenous glutamine negatively not only modulated storage protein hydrolysis, but it also retarded oil and starch degradation. Different from the metabolites, exogenous abscisic acid affected only the mobilization of oils and storage proteins. Sucrose and glutamine caused non-reducing sugar accumulation in the cotyledons and axis, but abscisic acid did not change the content of these compounds in both seedling parts. Curiously, glutamine failed to cause amino acid accumulation in the cotyledons and abscisic acid increased the amino acid content in both cotyledons and axis. Gibberellic acid did not stimulate reserve mobilization and metabolite consumption. Although the mobilization of oils, storage proteins, and starch has been delayed by sucrose and glutamine, these metabolites augmented the activity of isocitrate lyase, acid proteases, and amylases. Only abscisic acid reduced amylase activity and increased glutamine synthetase activity. Accordingly, sucrose and glutamine exert a “crossed effect” on reserve mobilization, that is, sucrose delays storage protein hydrolysis and glutamine retards oil and starch degradation. These effects may be mediated by non-reducing sugars and they are, at least in part, different from those exerted by abscisic acid.  相似文献   

10.
The changes in crude protein, free amino acids, amino acid composition, protein solubility, protein fractionation and protein digestibility after germination of sorghum were investigated. Sorghum varieties (Dorado, Shandaweel-6, Giza-15) were soaked for 20 h followed by germination for 72 h; the results revealed that crude protein and free amino acids in raw sorghum varieties ranged from 10.62 to 12.46% and 0.66 to 1.03 mg/g, respectively. Shandaweel-6 was the highest variety in crude protein and free amino acids content. After germination, crude protein was decreased and free amino acids were increased. There was an increase in content of valine and phenylalanine amino acids after germination. On the other hand, there was a decrease in most of amino acids after germination. After germination protein solubility was significantly increased. Regarding protein fractions, there was an increase in albumin, globulin and kafirin proteins and a decrease in cross linked kafirin and cross linked glutelin after germination.  相似文献   

11.
[14C]-Labeled amino acids and sucrose were fed to Vigna unguiculataseeds through cut-ends of cotyledons, and incorporations ofradioactivity into trichloroacetic acid- and 80% ethanol-insolublefractions of axes, respectively, were followed during 48 h ofthe post-imbibition development. The results of these studies,together with determinations of changes in dry weight and proteincontents after the onset of imbibition, indicated that the reservematerials stored in cotyledons were available for active growthof axes only after 12 h of post-imbibition. However, pulse-labelingexperiments, where [3H]-labeled leucine and uridine were feddirectly to axes attached to or detached from cotyledons, indicatedthat synthesis of protein and RNA in both axes was very pronouncedeven at earlier stages (2–8 h) of post-imbibition. Albuminand globulin proteins of axes disappeared most rapidly duringthe 6–12 h period of post-imbibition. Cycloheximide, -amanitinand cordycepin added to imbibing axes inhibited the degradationof major globulin proteins, whereas the inhibitors had littleeffect on the degradation of major albumin proteins. Both proteolyticand amylolytic activities were found to occur in embryonic axesof ‘dry’ seeds, and increased to higher levels asthe germination proceeded. Axes at early stages of germinationmay degrade the self-sustained reserve proteins and utilizethem for the synthesis of new proteins. (Received June 11, 1983; Accepted August 16, 1983)  相似文献   

12.
The free amino acid, protein, water and dry matter contents were determined during the seed development of Araucaria angustifolia. Soluble and insoluble proteins in the mature seed represent 4.2 % of the fresh matter. The embryonic axis stored the greatest amount of soluble proteins, while cotyledons both with the embryonic axis showed the largest quantities of insoluble proteins in the mature seed. The greatest concentration of free amino acids was detected during the stage when cotyledons start to develop. Glutamic acid, aspartic acid, alanine and serine were predominant in the whole seed while arginine, lysine and γ-aminobutyric acid were present in great amounts only in cotyledons and embryonic axis. Although megagametophyte was important as a source of free amino acids, it was not the major protein storage organ in the mature seed. In the embryogenetic process, the rise of cotyledons is closely related to physiological and biochemical changes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Spores ofAdiantum capillus-veneris L. incubated at 25 C for 3 days in the dark were irradiated with continuous red light to induce spore germination and cell growth during following 7 days. A portion of spores were cultured for 8 days in the dark as non-irradiated control. Rhizoidal and protonemal cells were observed at 3 days after transferring spores to the irradiation conditions. During 10 days of the experimental period, changes in the contents of following cell constituents were investigated: total lipid, total soluble sugar, reducing sugar, insoluble glucan, organic acid, protein, soluble α-amino N, and major free amino acids. A large part of nutrient reserves of spores was found to be lipid, whose content decreased markedly as spores germinated. Soluble and insoluble carbohydrates also provided carbon and energy sources during imbibition and germination. Two main reserve proteins were detected by SDS-polyacrylamide gel electrophoresis. These proteins disappeared mostly during germination. Major free amino acids could be assorted into three groups by their patterns of fluctuation during the germination.  相似文献   

14.
15.
Todd CD  Gifford DJ 《Planta》2003,217(4):610-615
Following germination of loblolly pine (Pinus taeda L.) seeds, storage proteins in the embryo and megagametophyte are broken down to provide nitrogen, in the form of amino acids, to the developing seedling. A substantial portion of the free amino acids released in this process is arginine. Arginine is hydrolyzed in the cotyledons of the seedling by the enzyme arginase (EC 3.5.3.1), which is under developmental control. It has been shown previously that the seedling is able to initiate arginase gene expression in vitro in the absence of the megagametophyte, however, presence of the megagametophyte causes a greater accumulation of arginase protein and mRNA. Using an in vitro culture system we show that arginine itself may be responsible for up-regulating arginase activity. Application of exogenous arginine to cotyledons of seedlings germinated in the absence of the megagametophyte caused an increase in total shoot pole arginase activity as well as arginase specific activity. Arginine was also able to induce arginase mRNA accumulation in the same tissue.  相似文献   

16.
The protein metabolism of cotyledons attached to the embryonic axis has been compared with that in cotyledons removed from the axis at the initiation of a 6-day imbibition. Total protein declined in the attached but not in the detached cotyledons. Concurrent with the decline in protein level in the intact cotyledons there was an increased capacity to incorporate exogenously supplied leucine into protein. In contrast, detached cotyledons showed a restricted capacity for protein synthesis. It was demonstrated that ribosomal preparations from cotyledons of intact seedlings contained an increasing proportion of polyribosomes as germination progressed and such ribosomes were active in in vitro amino acid incorporation. Ribosomal preparations from detached cotyledons contained few polyribosomes and had a restricted capacity to incorporate amino acids in vitro. The in vitro incorporation of phenylalanine was stimulated by polyuridylic acid with the stimulation being greatest in ribosomal preparations from detached cotyledons. The results suggest that an axis component may regulate the availability of messenger RNA in the cotyledons during germination.  相似文献   

17.
Gibberellic acid (GA3) promotes and continuous gold light inhibits germination of seeds of a dwarf strain (WB-2) of watermelon [Citrullus lanatus (Thunb.) Matsu. and Nakai]. Osmotic inhibition of germination with mannitol in light-grown seeds of WB-2 was only slightly reversed by GA3 at the concentrations used, whereas, GA3 substantially relieved osmotic inhibition in dark-grown seeds.

The effects of GA3 and gold light on development of catalase and invertase activities and on levels of free amino acids in germinating seeds of WB-2 were examined. Light depressed development of catalase and invertase activity. Levels of free amino acids increased more slowly in embryonic axes of light- than dark-incubated seeds, but in cotyledons higher levels of amino acids were maintained in light-grown seeds. GA3 accelerated the development of catalase activity in whole embryos and invertase activity in embryonic axes, but did not significantly affect invertase activity in cotyledons during germination. GA3 had little effect on amino acid pools in cotyledons and embryonic axes.

  相似文献   

18.
The action of light on protein synthesis was examined in the cabbage seedlings, a system extensively used in the studies of anthocyanin synthesis. Continuous red and far red light have no effect on total protein content while they cause a marked decrease in the level of free amino acids in cabbage seedlings. The rate of protein synthesis, measured as incorporation of radioaetively-labelled amino acids into proteins, is clearly stimulated by light. Phytochrome involvement in the light stimulation of the incorporation is also demonstrated by the red-far red reversibility of the response. The relative effectiveness of continuous red and far red light upon the incorporation of amino acids into proteins is affected by the nature of the system used to study the incorporation process. When excised cotyledons and short period of incorporation were used, continuous far red was more effective than red. However, when whole seedlings and long period of incorporation were used, red and far red were equally effective. Streptomycin causes a 10– 15% decrease in the rate of incorporation of amino acids into proteins of all cellular fractions, except the plastid fraction where a much higher inhibition (30%) was observed.  相似文献   

19.
During germination a steady decline in the reserve protein occurred in dark grown pumpkin cotyledons. By 9 days, 80% of this nitrogen reserve was hydrolyzed but only 50 % was removed from the cotyledons. The remaining nitrogen (30 %) was incorporated into water soluble protein which reached a maximum 9 days after germination. The increase in water soluble protein in pumpkin cotyledons parallel the increase in soluble and particulate aspartate aminotransferase (E.C.2.6.1.1.), suggesting that this enzyme is involved in nitrogen metabolism during germination. Little enzyme activity was found in pumpkin tissues other than the cotyledons. Four anodally moving isoenzymes were found in the soluble aspartate aminotrans-ferase fraction and 3 anodally moving isoenzymes were found in the particulate fraction. The slowest moving isoenzymes disappeared first during germination.  相似文献   

20.
The reserve mobilization was analysed in germinating seeds of faba bean (Vicia faba) exposed to treatment with a toxic cadmium concentration for 4 days. When the behaviours of three cultivars were compared with regard to the germination rate, the following order of sensitivity to cadmium was observed: Aguadulce and Luz de otoño showed 59 and 19% of inhibition from controls, respectively, while no effect was observed in the case of the local Féverole. The growth of embryo radicle was also affected in the same pattern. The differential vulnerability to Cd stress cannot be correlated to shortage in water supply of cotyledons. However, Cd-treated germinating seeds of the most sensitive cultivar (Aguadulce) showed restriction in starch mobilization and decrease in availability of soluble sugars and free amino acids. Moreover, glucose, fructose and amino acids were markedly leaked into the germination medium at the expense of the growing embryonic axis during exposure to Cd. These results provide an indication of the way in which cadmium might impair seed germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号