首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary When semithin sections stained by immunoperoxidase-DAB methods are exposed to ultraviolet light in a fluorescence microscope, immunoreactive cells develop a strong yellowish fluorescence within 2–4 min. This property offers the possibility of visualizing even reaction products which can barely be identified by other microscopical techniques. Thus the efficiency of immunoperoxidase methods is greatly enhanced. Moreover the histochemical proof of endogenous peroxidatic active enzymes visualized with DAB as substrate may also be facilitated using fluorescence microscopy.Supported by a grant from the Deutsche Forschungsgemeinschaft, SFB 87/G 2  相似文献   

2.
Molecular relaxation fluorescence methods were applied to analyze the nature and characteristic times of motions of amphiphilic molecules absorbed in the polar region of a phospholipid bilayer. The fluorescence probes 2-toluidinonaphthalene-6-sulfonate and 1-anilinonaphthalene-8-sulfonate in egg phosphatidylcholine vesicles were studied. The methods of edge excitation fluorescence red shifts, nanosecond time-resolved spectroscopy, fluorescence quenching by hydrophilic and hydrophobic quenchers and emission wavelength dependence of polarization were used. The structural (dipolar) relaxation is shown to be a very rapid (subnanosecond) process. The observed nanosecond phenomena are related to translational movement of the chromophore itself towards a more polar environment and its rotation. The polar surface area of the phospholipid membrane appears to be a highly mobile liquid-like system.  相似文献   

3.
In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.  相似文献   

4.
8-(Pyren-1-yl)-2'-deoxyguanosine (Py-G) was incorporated synthetically as a modified DNA base and optical probe into oligonucleotides. A variety of Py-G-modified DNA duplexes have been investigated by methods of optical spectroscopy. The DNA duplex hybridization can be observed by both fluorescence and absorption spectroscopy since the Py-G group exhibits altered properties in single strands versus double strands for both spectroscopy methods. The fluorescence enhancement upon DNA hybridization can be improved significantly by the presence of 7-deazaguanin as an additional modification and charge acceptor three bases away from the Py-G modification site. Moreover, Py-G in DNA can be applied as a photoinducable donor for charge transfer processes when indol is present as an artificial DNA base and charge acceptor. Correctly base-paired duplexes can be discriminated from mismatched ones by comparison of their fluorescence quenching.  相似文献   

5.
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.  相似文献   

6.
We have exploited three methods for discriminating single-nucleotide polymorphisms (SNPs) by detecting the incorporation or otherwise of labeled dideoxy nucleotides at the end of a primer chain using single-molecule fluorescence detection methods. Good discrimination of incorporated vs free nucleotide may be obtained in a homogeneous assay (without washing steps) via confocal fluorescence correlation spectroscopy or by polarization anisotropy obtained from confocal fluorescence intensity distribution analysis. Moreover, the ratio of the fluorescence intensities on each polarization channel may be used directly to discriminate the nucleotides incorporated. Each measurement took just a few seconds and was done in microliter volumes with nanomolar concentrations of labeled nucleotides. Since the confocal volumes interrogated are approximately 1fL and the reaction volume could easily be lowered to nanoliters, the possibility of SNP analysis with attomoles of reagents opens up a route to very rapid and inexpensive SNP detection. The method was applied with success to the detections of SNPs that are known to occur in the BRCA1 and CFTR genes.  相似文献   

7.
Imaging methods can give both temporal and spatial dimensions to characterize the processes in progression of and/or treatment of specific disease Subcutaneous tumors can be cured after electrochemotherapy (ECT). Growth and reduction of tumors as a result of cytotoxic therapy can be followed by fluorescence video imaging directly on the same animal after treatment. Imaging of tumors should bring more information on the cellular effects of ECT. Green fluorescent protein (eGFP) expressing B16F10 and LPB tumors implanted in C57Bl/6 mice were treated with ECT with cisplatin. The growth or regression of the tumors was monitored either classically by using a caliper or by a manual definition of the region of interest where critical fluorescence levels were detected on the animals. A very good correlation between the two methods was observed. The eGFP mean fluorescence emission was only slightly affected by ECT with intravenously injected cisplatin. Ex vivo observations under a fluorescence microscope showed that eGFP was only detected on the outer layer of the tumor. No fluorescence was detected in the central part of the tumors, which were necrotic.  相似文献   

8.
Enhanced GFP (EGFP) is a powerful tool for the visualization of tagged proteins and transfected cells and is easily detected by fluorescence microscopy or flow cytometry in living cells. However, soluble EGFP molecules can be lost if cell integrity is disrupted by freezing, sectioning, or permeablization. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilize EGFP may also destroy its usefulness as a fluorescent reporter. Here we determined which methods of preparing murine lymphoid tissues immobilized soluble EGFP protein and retained its fluorescence while simultaneously maintaining the antigenicity of various immunologically important molecules and best preserving the overall morphology of the tissues. We found that EGFP could not be visualized in frozen sections of spleen that had not been fixed before freezing. However, robust EGFP fluorescence could be observed in frozen sections of tissues fixed under various conditions. Fixation was important to immobilize EGFP rather than to maintain conformation, because only minimal EGFP could be detected by immunofluorescence in unfixed frozen sections. Although it had little effect on EGFP fluorescence, the inclusion of sucrose during fixation better preserved the morphology of fixed tissues. These methods also preserved the antigenicity of a wide variety of molecules used to identify cell types in lymphoid tissues.  相似文献   

9.
Several laboratories have determined the surface charge density of membranes utilizing methods based on vesicle-induced quenching of the fluorescence of 9-aminoacridine and its relief by other cations. However, the computational methods by which surface charge density were calculated have not been verified in a model system. In this study, the quenching of 9-aminoacridine fluorescence by liposomes made from varying amounts of digalactosyldiacylglyceride and phosphatidic acid and relief of quenching by salts was examined. Quenching of 9-aminoacridine fluorescence increased with increasing amounts of phosphatidic acid added, independent of the composition of the added liposomes. In certain instances, the computational methods did not yield the surface charge density of the liposomes expected from their composition. However, when the effects of background ionic strength on surface potential were considered, there was a positive correlation between expected and calculated values. Therefore, the data support the contention that changes in the fluorescence of 9-aminoacridine can be used to calculate surface charge density of membranes. Received: 29 November 1999/Revised: 31 July 2000  相似文献   

10.
Protein heterogeneous fluorescence results from the different microenvironment of each emitting chromophore. The structural and dynamic information contained in this emission can be extracted to some extent by selective quenching experiments. In this work, graphical and numerical methods are described for the analysis of protein emission in terms of three separated contributions: a fluorescence fraction which is not accessible to the quencher and two additional fractions with different solvent exposure. ‘Static quenching’ deviations from Stern-Volmer behaviour are also discussed. The application of these methods is exemplified on simulated quenching experiments and real data on acrylamide quenching of lysozyme fluorescence.  相似文献   

11.
The use of fluorescence imaging methods, most recently based on fluorescent protein technology, and the availability of high quality fluorescence imaging systems have driven a revolution in cell and molecular biology. Live cell imaging, especially using fluorescence, is now used in a wide variety of assays in academic and commercial laboratories. The use of this technology requires particular attention to be paid to cell engineering, the design of the image acquisition system, the imaging protocol, and subsequent processing and analytic methods. In this review, we discuss each of these steps, highlighting practical techniques developed by us and others.  相似文献   

12.
Correlative microscopy is a powerful imaging approach that refers to observing the same exact structures within a specimen by two or more imaging modalities. In biological samples, this typically means examining the same sub-cellular feature with different imaging methods. Correlative microscopy is not restricted to the domains of fluorescence microscopy and electron microscopy; however, currently, most correlative microscopy studies combine these two methods, and in this review, we will focus on the use of fluorescence and electron microscopy. Successful correlative fluorescence and electron microscopy requires probes, or reporter systems, from which useful information can be obtained with each of the imaging modalities employed. The bi-functional immunolabeling reagent, FluoroNanogold, is one such probe that provides robust signals in both fluorescence and electron microscopy. It consists of a gold cluster compound that is visualized by electron microscopy and a covalently attached fluorophore that is visualized by fluorescence microscopy. FluoroNanogold has been an extremely useful labeling reagent in correlative microscopy studies. In this report, we present an overview of research using this unique probe.  相似文献   

13.
Fluorescence microscopy is an important and extensively utilised tool for imaging biological systems. However, the image resolution that can be obtained has a limit as defined through the laws of diffraction. Demand for improved resolution has stimulated research into developing methods to image beyond the diffraction limit based on far-field fluorescence microscopy techniques. Rapid progress is being made in this area of science with methods emerging that enable fluorescence imaging in the far-field to possess a resolution well beyond the diffraction limit. This review outlines developments in far-field fluorescence methods which enable ultrahigh resolution imaging and application of these techniques to biology. Future possible trends and directions in far-field fluorescence imaging with ultrahigh resolution are also outlined.  相似文献   

14.
An express assay for screening of potato transformants by their GFP fluorescence intensities is developed. In comparison to the widely used methods of transgenic plant screening by PCR, Real-Time RTPCR or Northern-blotting, the GFP fluorescence assay needs no expensive reagents and takes less time. This approach may also be used for nondestructive screening of the T0 transgenic regenerants which can be further grown and used. To prove this assay reliability, the expression of the hGFP gene in the leaves of transgenic potato (cv. Skoroplodny) plants, determined by its mRNA accumulation, was compared to GFP fluorescence intensity in the micro-samples of aseptic plant leaves. The strong correlation between the results of these two methods is the evidence of positive dependence of GFP fluorescence intensity on the target mRNA content.  相似文献   

15.
Guo B  Pearce AG  Traulsen KE  Rintala AC  Lee H 《BioTechniques》2001,31(2):314-6, 318, 320-1
The Aequorea victoria green fluorescent protein (GFP) reporter system is a convenient way to monitor gene expression and other cellular functions in mammalian cells. To study gene expression, a GFP-fusion plasmid construct is often transfected into mammalian cells using a variety of methods including calcium phosphate- and liposome-based DNA transfer. Subsequently, the expression of GFP-fusion protein is monitored by fluorescence microscopy or flow cytometry. Here, we report that certain transfection reagents can produce fluorescence that can be detected in a wide range of wavelengths, which can be confused with GFP-fusion protein. The fluorescence false positives can be a problem, particularly when the GFP expression levels are low. To improve the GFP-based detection or screening methods, it is imperative to include an appropriate negative control and to detect GFP using a narrow-wavelength emission filter corresponding to the emission spectrum around the GFP peak.  相似文献   

16.
In the present paper we report a comparative study of physical properties and biochemical composition of isolated melanosomal membranes extracted from bovine eyes and from an equine spleen melanoma. Some biophysical characteristics of such membranes were obtained by steady-state and time resolved fluorescence spectroscopy using DPH as fluorescent probe. By these methods we have measured both static fluorescence polarization and fluorescence lifetimes and from the experimental data we have calculated the rotational correlation times by Perrin's equation. Since dynamic and static parameters, such as fluidity and molecular order, can be determined by these methods, the results are discussed on the basis of the recent theories of the role of the biochemical composition in the molecular structure and properties of membranes.  相似文献   

17.
A low lipase activity from a crude extract of Arabidopsis seedlings was assayed using three sensitive methods (radiolabelled triacylglycerols, commercial resorufin ester and triacylglycerols containing the naturally fluorescent parinaric acid as substrates). The specific activity of the extract was found to be similar using the three methods. However, the plant lipase activity measured using the radioactivity and the fluorescence assays could be abolished by heating the extract, contrary to the apparent activity measured using the commercial colorimetric assay. Unlike the radioactivity assay, the fluorescence assay can be monitored continuously. The parinaric acid-based method is therefore the only one to provide a sensitive, specific and continuous assay.  相似文献   

18.
Now the methods using the radiance with complex dependence of light intensity on time are applied to research of photosynthesis by means of fluorescence, exciting photosynthetic pigments. One of these methods is applied in PAM-fluorometers--the commercial devices currently widely used to investigate a state of photosynthesizing systems. However, if excitation is performed in this way, the question, what components of fluorescence are registered at an output of such devices, remains to be open-ended. In this work an attempt to analyse this task has been made.  相似文献   

19.
We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the organic solvents were isooctane and (the more viscous) dodecane, respectively. The water content of the water pools could be controlled through the parameter w0, which is the water-to-surfactant molar ratio. With steady-state fluorescence, it was observed that subtle fluorescence changes could be noted in reversed micelles of different water contents. EGFP can be used as a pH-indicator of the water droplets in reversed micelles. Time-resolved fluorescence methods also revealed subtle changes in fluorescence decay times when the results in bulk water were compared with those in reversed micelles. The average fluorescence lifetimes of EGFP scaled with the relative fluorescence intensities. Time-resolved fluorescence anisotropy of EGFP in aqueous solution and reversed micelles yielded single rotational correlation times. Geometrical considerations could assign the observed correlation times to dehydrated protein at low w0 and internal EGFP rotation within the droplet at the highest w0.  相似文献   

20.
We identify objects from their visually observable morphological features. Automatic methods for identifying living objects are often needed in new technology, and these methods try to utilize shapes. When it comes to identifying plant species automatically, machine vision is difficult to implement because the shapes of different plants overlap and vary greatly because of different viewing angles in field conditions. In the present study we show that chlorophyll a fluorescence, emitted by plant leaves, carries information that can be used for the identification of plant species. Transient changes in fluorescence intensity when a light is turned on were parameterized and then subjected to a variety of pattern recognition procedures. A Self-Organizing Map constructed from the fluorescence signals was found to group the signals according to the phylogenetic origins of the plants. We then used three different methods of pattern recognition, of which the Bayesian Minimum Distance classifier is a parametric technique, whereas the Multilayer Perceptron neural network and k-Nearest Neighbor techniques are nonparametric. Of these techniques, the neural network turned out to be the most powerful one for identifying individual species or groups of species from their fluorescence transients. The excellent recognition accuracy, generally over 95%, allows us to speculate that the method can be further developed into an application in precision agriculture as a means of automatically identifying plant species in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号