首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The secretory pathway is important in actively transporting proteins into the extracellular environment of eucaryotic cells. In this study a green fluorescent protein (GFP) mutant engineered to contain a secretion signal was used as a model protein in order to visualize the secretion process inside insect cells. Fluorescent microscopy indicated that significant amounts of secreted green fluorescent protein (sGFP) accumulated in High-Five, Trichoplusia ni, cells following infection with a baculovirus vector containing the gene under the polyhedrin promoter. Laser scanning confocal microscopy was used to reconstruct whole cell images of the infected High-Five cells at multiple days postinfection. While the protein was widely distributed at 2 days postinfection, certain intracellular regions appeared to contain higher or lower concentrations of the sGFP. A layer by layer examination indicated pockets in which sGFP was absent, and these appear to be vesicles that have recently released the sGFP or are not yet accumulating sGFP. By 3 days postinfection, the sGFP in some cells was concentrated in a number of widely dispersed globules, which may represent the vesicle remnants of a deteriorating secretory pathway. In contrast, nonsecreted GFP was more uniformly distributed in the cells than sGFP and did not accumulate in vesicles. In addition to GFP, the lectins wheat germ agglutinin (WGA) and concanavalin A (ConA), which have affinities for sugar residues, were used to examine the secretory pathway. The WGA, which is a Golgi marker, was distributed around the nucleus prior to infection but then was found to be polarized in one region of the cell following the baculovirus infection. The expansion of other cellular compartments following the baculovirus infection may have caused a change in intracellular distribution of the Golgi. While some of the sGFP was found to colocalize with the WGA label, much of the sGFP was outside this Golgi region. In contrast, ConA labeling, which was not as specific as WGA, was found throughout the cell both before and after infection similar to the sGFP distribution. These studies demonstrate that confocal visualization of fluorescent proteins can be used as an in vivo tool for examining secretory processing in insect cells.  相似文献   

2.
Epidermal cell layers play important roles in plant defenses against various environmental stresses. Here we report the identification of a cuticle membrane mutant, wilted dwarf and lethal 1 (wdl1), from a rice T-DNA insertional population. The muant is dwarf and die at seedling stage due to increased rates of water loss. Stomatal cells and pavement cells are smaller in the mutant, suggesting that WDL1 affects epidermal cell differentiation. T-DNA was inserted into a gene that encodes a protein belonging to the SGNH subfamily, within the GDSL lipase superfamily. The WDL1–sGFP signal coincided with the RFP signal driven by AtBIPmRFP, indicating that WDL1 is an ER protein. SEM analyses showed that their leaves have a disorganized crystal wax layer. Cross-sectioning reveals loose packing of the cuticle and irregular thickness of cell wall. Detailed analyses of the epicuticular wax showed no significant changes either in the total amount and amounts of each monomer or in the levels of lipid polymers, including cutin and other covalently bound lipids, attached to the cell wall. We propose that WDL1 is involved in cutin organization, affecting depolymerizable components.  相似文献   

3.
Although the multilayered structure of the plant cuticle was discovered many years ago, the molecular basis of its formation and the functional relevance of the layers are not understood. Here, we present the permeable cuticle1 (pec1) mutant of Arabidopsis thaliana, which displays features associated with a highly permeable cuticle in several organs. In pec1 flowers, typical cutin monomers, such as ω-hydroxylated fatty acids and 10,16-dihydroxypalmitate, are reduced to 40% of wild-type levels and are accompanied by the appearance of lipidic inclusions within the epidermal cell. The cuticular layer of the cell wall, rather than the cuticle proper, is structurally altered in pec1 petals. Therefore, a significant role for the formation of the diffusion barrier in petals can be attributed to this layer. Thus, pec1 defines a new class of mutants. The phenotypes of the pec1 mutant are caused by the knockout of ATP BINDING CASSETTEG32 (ABCG32), an ABC transporter from the PLEIOTROPIC DRUG RESISTANCE family that is localized at the plasma membrane of epidermal cells in a polar manner toward the surface of the organs. Our results suggest that ABCG32 is involved in the formation of the cuticular layer of the cell wall, most likely by exporting particular cutin precursors from the epidermal cell.  相似文献   

4.
A laser micromarking technique on plant epidermis was developed to study how a plant can reduce the stress in bending behavior by controlling the growth and morphogenesis. The negative gravitropism in a pea seedling (Pisum sativum L.) was discussed based on the time-dependent displacement of laser marking points which were formed by spatially-selective laser ablation of the cuticle layer that covers the outer surface of a plant. The elongation of the stem in the horizontal direction was remarkable in the first half of the gravitropism. The elongation percentages of the stem length between laser-marking points at around upper surface, middle, and bottom surface were evaluated to be 2.57, 4.87, and 7.70%, respectively. The characteristic feature of the stem bending in gravitropism is the elongation even at the upper surface region, that is, inside of the bending. This is a different feature from cantilever beams for structural materials like metals and polymers, where the compression of the upper surface and elongation of the bottom surface are caused by bending. Another laser micromarking technique was developed to improve the resolution of a dot-matrix pattern by fluorescent material transfer to a plant through a masking film with a micro-hole matrix pattern. Similar time-dependent displacement behavior was observed for a fluorescent dot-marked stem showing a feedback control loop in the mechanical optimization. These results suggested that plants solve the problem of the stress in stem bending through growth. The laser micromarking is an effective method for studying the mechanical optimization in plants.  相似文献   

5.

Main conclusion

The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes. The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as ‘amorphous,’ lacking in ultrastructural features, and is often observed as a thin (~80–100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.
  相似文献   

6.
The outer wall of Ornithogalum umbellatum ovary and the fruit epidermis are covered with a thick cuticle and contain lipotubuloids incorporating 3H-palmitic acid. This was earlier evidenced by selective autoradiographic labelling of lipotubuloids. After post-incubation in a non-radioactive medium, some marked particles insoluble in organic solvents (similar to cutin matrix) moved to the cuticular layer. Hence, it was hypothesised that lipotubuloids participated in cuticle synthesis. It was previously suggested that cutinsomes, nanoparticles containing polyhydroxy fatty acids, formed the cuticle. Thus, identification of the cutinsomes in O. umbellatum ovary epidermal cells, including lipotubuloids, was undertaken in order to verify the idea of lipotubuloid participation in cuticle synthesis in this species. Electron microscopy and immunogold method with the antibodies recognizing cutinsomes were used to identify these structures. They were mostly found in the outer cell wall, the cuticular layer and the cuticle proper. A lower but still significant degree of labelling was also observed in lipotubuloids, cytoplasm and near plasmalemma of epidermal cells. It seems that cutinsomes are formed in lipotubuloids and then they leave them and move towards the cuticle in epidermal cells of O. umbellatum ovary. Thus, we suggest that (1) cutinsomes could take part in the synthesis of cuticle components also in plant species other than tomato, (2) the lipotubuloids are the cytoplasmic domains connected with cuticle formation and (3) this process proceeds via cutinsomes.  相似文献   

7.
During leaf senescence, Rubisco is gradually degraded and its components are recycled within the plant. Although Rubisco can be mobilized to the vacuole by autophagy via specific autophagic bodies, the importance of this process in Rubisco degradation has not been shown directly. Here, we monitored Rubisco autophagy during leaf senescence by fusing synthetic green fluorescent protein (sGFP) or monomeric red fluorescent protein (mRFP) with Rubisco in Arabidopsis (Arabidopsis thaliana). When attached leaves were individually exposed to darkness to promote their senescence, the fluorescence of Rubisco‐sGFP was observed in the vacuolar lumen as well as chloroplasts. In addition, release of free‐sGFP due to the processing of Rubisco‐sGFP was observed in the vacuole of individually darkened leaves. This vacuolar transfer and processing of Rubisco‐sGFP was not observed in autophagy‐deficient atg5 mutants. Unlike sGFP, mRFP was resistant to proteolysis in the leaf vacuole of light‐grown plants. The vacuolar transfer and processing of Rubisco‐mRFP was observed at an early stage of natural leaf senescence and was also obvious in leaves naturally covered by other leaves. These results indicate that autophagy contributes substantially to Rubisco degradation during natural leaf senescence as well as dark‐promoted senescence.  相似文献   

8.
Delta 9-tetrahydrocannabinol (THC) localization in glandular trichomes and bracteal tissues of Cannabis, prepared by high pressure cryofixation-cryosubstitution, was examined with a monoclonal antibody-colloidal gold probe by electron microscopy (EM). The antibody detected THC in the outer wall of disc cells during the presecretory cavity phase of gland development. Upon formation of the secretory cavity, the immunolabel detected THC in the disc cell wall facing the cavity as well as the subcuticular wall and cuticle throughout development of the secretory cavity. THC was detected in the fibrillar matrix associated with the disc cell and with this matrix in the secretory cavity. The antibody identified THC on the surface of secretory vesicles, but not in the secretory vesicles. Gold label also was localized in the anticlinal walls between adjacent disc cells and in the wall of dermal and mesophyll cells of the bract. Grains were absent or detected only occasionally in the cytoplasm of disc or other cells of the bract. No THC was detected in controls. These results indicate THC to be a natural product secreted particularly from disc cells and accumulated in the cell wall, the fibrillar matrix and surface feature of vesicles in the secretory cavity, the subcuticular wall, and the cuticle of glandular trichomes. THC, among other chemicals, accumulated in the cuticle may serve as a plant recognition signal to other organisms in the environment.  相似文献   

9.
Laser microsurgery: a versatile tool in plant (electro) physiology   总被引:2,自引:0,他引:2  
Summary In plant cells the cell wall is a formidable obstacle in many physiological studies such as patch-clamp measurements and cell labelling with antibodies. Enzymatic digestion of the cell wall, in order to release a protoplast, has a number of disadvantages; therefore we worked out an alternative method to gain access to the plasma membrane. The wall of specialized cells from three higher plant species and one unicellular alga were perforated using the focussed UV light of a nitrogen laser. In order to enhance the absorption of the UV light by the walls, a dye was used that binds specifically to cell wall components. Extrusion of the protoplast or parts thereof was controlled by a regulated gradual decrease of the osmolarity of the solution surrounding the cells. Cytoplasmic streaming and chloroplast circulation were maintained in the protoplasts, demonstrating their viability after the wall perforation with the laser. Continuous deposition of new cell wall material by the polar tip of pollen tubes after surgical removal of the wall at the tip is another demonstration of the viability of the cells. Formation of high resistance seals between the plasma membrane and a patch pipet was surprisingly difficult. The role of Hechtian strands and continuing synthesis of cell wall material in seal formation is further investigated. Other applications for the surgical laser are: fusion of two cells or vacuoles, analysis of the composition of specific parts of the cell wall, and release of the vacuole from an identified cell type for patchclamp studies.Abbreviations CFW calcofluor white - PM plasma membrane  相似文献   

10.
Green fluorescent protein (GFP) has emerged as a powerful new tool in a variety of organisms. An engineered sGFP(S65T) sequence containing optimized codons of highly expressed eukaryotic proteins has provided up to 100-fold brighter fluorescence signals than the original jellyfish GFP sequence in plant and mammalian cells. It would be useful to establish a non-invasive, quantitative detection system which is optimized for S65T-type GFP, one of the brightest chromophore mutants among the various GFPs. We demonstrate here that highly fluorescent transgenic Arabidopsis can be generated, and the fluorescence intensity of whole plants can be measured under non-disruptive, sterile conditions using a quantitative fluorescent imaging system with blue laser excitation. Homozygous plants can be distinguished from heterozygous plants and fully fertile progenies can be obtained from the analyzed plants. In the case of cultured tobacco cells, GFP-positive cells can be quantitatively distinguished from non-transformed cells under non-selective conditions. This system will be useful in applications such as mutant screening, analysis of whole-body phenomena, including gene silencing and quantitative assessments of colonies from microorganisms to cultured eukaryotic cells. To facilitate the elucidation of protein targeting and organelle biogenesis in planta, we also generated transgenic Arabidopsis that stably express the plastid- or mitochondria-targeted sGFP(S65T). Etioplasts in dark-grown cotyledons and mitochondria in dry seed embryos could be visualized for the first time in transgenic Arabidopsis plants under normal growing conditions.  相似文献   

11.
Summary The dermal system comprises the outer epidermis of the pericarp, its covering of wax and cuticle and the collenchymatous hypodermal cells. During the first of the two post-anthesis phases of fruit growth, differentiation occurred with respect to cell and nuclear volume, content of polyphenolic substances, and wall thickening. Walls of the presumptive dermal system cells developed massive primary thickenings which stained intensely with fluorescent brightener dyes. In the second phase of fruit growth these cells were redifferentiated, their walls becoming thinner as they enlarged to accommodate fruit expansion. Binding of the fluorescent brightener dye was reduced and confined to the outer edges of the walls. At maturity, the walls of the cortical cells adjacent to the dermal system underwent autolysis.The cuticle was evident during the first 16 days after anthesis as a thin layer which reacted positively with neutral lipid dyes and which contained periodate sensitive vinyl groups. Differentiation of a secondary cuticle followed, and a number of distinct layers were detected by autofluorescence, and staining with auramine 0, Nile blue, and PAS. Cuticle thickness and complexity was maintained throughout the second growth phase.  相似文献   

12.
The stigma papillae in Gladiolus are of the “dry” type and are highly vacuolated cells with an organelle-rich peripheral cytoplasm. The cell wall of each papilla is overlain by a distinctive cuticle possessing an irregularly scalloped inner margin. Between the cell wall and cuticle is a layer of amorphous sub-cuticular material. Lipids are detected on the papilla surface. A pollen grain will hydrate and germinate only on a papilla and not on any other (non-papillate) portion of the stigma. The pollen tube penetrates the papilla cuticle, which is forced away from the papilla cell wall by sub-cuticular pollen tube growth. As the cuticle lifts away, the sub-cuticular material disperses. At the base of the papilla, the pollen tube grows onto the adaxial non-papillate surface of the stigma lobe. At this site, the cuticle has been lifted away from the underlying cells by release of a mucilaginous substance from the latter, and the pollen tube grows within this substance beneath the detached cuticle. The cytological features of Gladiolus papillae are compared with other stigma papillae described in the literature. Also, a review of the literature, as well as some of the findings of the present study, suggest that certain prevalent interpretations of dry stigma structure and function may be open to question.  相似文献   

13.
Foliar water uptake (FWU), the direct uptake of water into leaves, is a global phenomenon, having been observed in an increasing number of plant species. Despite the growing recognition of its functional relevance, our understanding of how FWU occurs and which foliar surface structures are implicated, is limited. In the present study, fluorescent and ionic tracers, as well as microcomputed tomography, were used to assess potential pathways for water entry in leaves of beech, a widely distributed tree species from European temperate regions. Although none of the tracers entered the leaf through the stomatal pores, small amounts of silver precipitation were observed in some epidermal cells, indicating moderate cuticular uptake. Trichomes, however, were shown to absorb and redistribute considerable amounts of ionic and fluorescent tracers. Moreover, microcomputed tomography indicated that 72% of empty trichomes refilled during leaf surface wetting and microscopic investigations revealed that trichomes do not have a cuticle but are covered with a pectin‐rich cell wall layer. Taken together, our findings demonstrate that foliar trichomes, which exhibit strong hygroscopic properties as a result of their structural and chemical design, constitute a major FWU pathway in beech.  相似文献   

14.
15.

Background

Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals.

Results

Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall.

Conclusions

The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
  相似文献   

16.
Epidermis micromorphology of in situ Erica arborea L. exposed for generations to long-term effect of volcanic gases in Pisciarelli and Solfatara di Pozzuoli areas have been studied by X-ray analyses, SEM and TEM observations. In particular, the aim of this study is to investigate the effects of volcanic gases on extant and possibly fossil plants. Plants of the same species living in a nearby control site were also studied for comparison. SEM coupled with EDX analysis was used to localize different elements within the leaves (mesophyll, cell wall and cuticle). After conventional and cryo preparation, SEM of mature leaves ascertained that the abaxial side is more serrate in fumigated leaves and hairs, epicuticular wax alterations have also been noted. Leaves experiencing chronic fumigation display stomata more sunken with respect to the epidermal surface. TEM of transverse and longitudinal sections of cuticle showed an outer A2 granular amorphous layer and external to a B1 fibrillous layer. Significant statistical variations of ultrastructural components of the cuticle revealed a response of E. arborea to this extreme environment. At the ultrastructural level, significant variations in thickness of the cell wall plus cuticle, cell wall and A2 layer among fumigated and non-fumigated leaves have been found. In the studied localities a positive correlation between atmospheric CO2 concentration and the thickness of A2 layer also exists. The results are of interest being applicable in the understanding of plant cuticle responses during periods of normal vs. volcanic activity.  相似文献   

17.
The fine structure and monomeric composition of the ester-cutin fraction (susceptible to BF3/CH3OH transesterification) of the adaxial leaf cuticle of Clivia miniata Reg. were studied in relation to leaf and cuticle development. Clivia leaves grow at their base such that cuticle and tissues increase in age from the base to the tip. The zone of maximum growth (cell expansion) was located between 1 and 4 cm from the base. During cell expansion, the projected surface area of the upper epidermal cells increased by a factor of nine. In the growth region the cuticle consists mainly of a polylamellate cuticle proper of 100–250 nm thickness. After cell expansion has ceased both the outer epidermal wall and the cuticle increase in thickness. Thickening of the cuticle is accomplished by interposition of a cuticular layer between the cuticle proper and the cell wall. The cuticular layer exhibits a reticulate fine structure and contributes most of the total mass of the cuticle at positions above 6 cm from the leaf base. The composition of ester cutin changed with the age of cuticles. In depolymerisates from young cuticles, 26 different monomers could be detected whereas in older ones their number decreased to 13. At all developmental stages, 9,16-/10,16-dihydroxyhexadecanoic acid (positional isomers not separated), 18-hydroxy-9-octadecenoic acid, 9,10,18-trihydroxyoctadecanoic acid and 9,10-epoxy-18-hydroxyoctadecanoic acid were most frequent with the epoxy alkanoic acid clearly predominating (47% at 16 cm). The results are discussed as to (i) the age dependence of cutin composition, (ii) the relationship between fine structure and composition, (iii) the composition of the cuticle proper, the cuticular layer and the non-depolymerizable cutin fraction, and (iv) the polymeric structure of cutin.Abbreviations CL cuticular layer - CP cuticle proper - MX cutin polymer matrix  相似文献   

18.
Cutin fluorescence, after auramine O treatment, was detected on the surface of organogenic areas (protuberances) of endosperm derived callus induced on Murashige and Skoog medium with thidiazuron (0.5 mg l−1) in darkness. Electron micrographs of the protuberances revealed cuticle, visible as a dark-staining layer, and amorphous waxes on the cell wall. In some cases the cells of the epidermis-like layer and shoot buds at early stages of development showed thick and characteristically wavy cutin. This waviness corresponds with the wrinkled appearance of the cell wall as observed by scanning electron microscopy. The role of multivesicular bodies in cutin production and transfer to the plasma membrane is discussed.  相似文献   

19.
A developmental study of the cuticle has shown that it consists of a homogeneous cuticle proper apposed on the wall and a heterogeneous cuticular layer generated by intussusception of cutin into the wall. At an early stage, the adcrusted cuticle proper is underlain by a ruthenium red-positive layer in which the cuticular layer originates. The origin of the anticlinal flange is referable to an electron-dense, ruthenium red-positive ridge which arises above the anticlinal wall and which also becomes cutinized. At leaf maturity, the inner surface of the cuticular layer, including that of the flange, forms interdigitating protuberances with the cell wall.
Development of the cuticle coincides with deposition of crystals of calcium oxalate in the epidermal cell wall. Initiation of large, early-formed crystals is associated with electron-opaque membranous structures formed close and parallel to the plasmalemma in the young cell wall. Crystals undergo periclinal and anticlinal growth and subsequently become engulfed within the cuticle by development of the cuticular layer. Cutin/polysaccharide interaction during development and the significance of crystal deposition are discussed.  相似文献   

20.
In this paper, we describe the development and characterization of a biochip platform for cell transfection assays. Silicon wafers were surface modified by plasma polymerization of allylamine plasma polymer (ALAPP) and grafting of a protein-resistant layer of poly(ethylene oxide) (PEO) on the plasma polymer surface. Excimer laser ablation was then used to pattern ALAPP-PEO coated samples for spatially controlled protein adsorption and subsequent cell attachment. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface modifications before and after excimer laser ablation. Experiments confirmed the creation of a two-dimensionally controlled surface chemistry on the biochip. Cell culture experiments using human embryonic kidney (HEK 293) cells showed that cells attached exclusively to laser ablated areas. In addition, cells confined to ablated areas were successfully transfected with plasmid DNA containing the gene for green fluorescent protein (GFP). The cell transfection efficiencies of cells growing in a culture flask and cells confined on the biochip were determined to be 21 and 13%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号