首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The quantitative effects of variations in the amount of enzyme IIGlc of the phosphoenolpyruvate:glucose phosphotransferase system (PTS) on glucose metabolism in Escherichia coli were studied. The level of enzyme IIGlc could be adjusted in vivo to between 20 and 600% of the wild-type chromosomal level by using the expression vector pTSG11. On this plasmid, expression of the structural gene for enzyme IIGlc, ptsG, is controlled by the tac promoter. As expected, the control coefficient (i.e., the relative increase in pathway flux, divided by the relative increase in amount of enzyme) of enzyme IIGlc decreased in magnitude if a more extensive pathway was considered. Thus, at the wild-type level of enzyme IIGlc activity, the control coefficient of this enzyme on the growth rate on glucose and on the rate of glucose oxidation was low, while the control coefficient on uptake and phosphorylation of methyl alpha-glucopyranoside (an enzyme IIGlc-specific, nonmetabolizable glucose analog) was relatively high (0.55 to 0.65). The implications of our findings for PTS-mediated regulation, i.e., inhibition of growth on non-PTS compounds by glucose, are discussed.  相似文献   

2.
Mannitol bound to enzyme IImtl could be trapped specifically by rapid phosphorylation with P-HPr. The assay was used to demonstrate transport of mannitol across the cytoplasmic membrane with and without phosphorylation of mannitol. The latter was 2-3 orders of magnitude slower. The fraction of bound mannitol molecules that was actually phosphorylated, the efficiency of the trap, was less than 50%. The efficiency was not very different for enzyme IImtl embedded in the membrane of vesicles with an inside-out orientation or solubilized in detergent. Subsequently, it is argued that the fraction of the bound mannitol molecules that was not phosphorylated dissociated into the cytoplasmic space. A model for the catalytic mechanism of enzyme IImtl is proposed on the basis of interpretations of the present experiments. The main features of the model are the following: (i) mechanistically, the coupling between transport and phosphorylation is less than 50%; (ii) in the physiological steady state of mannitol transport and metabolism, the coupling is 100%; (iii) phosphorylated enzyme IImtl catalyzes facilitated diffusion at a high rate; (iv) the state of phosphorylation of the cytoplasmic domain modulates the activity of the translocator domain; (v) the enzyme catalyzes phosphorylation of free cytoplasmic mannitol at least as fast as it catalyzes transport plus phosphorylation of free periplasmic mannitol.  相似文献   

3.
4.
The kinetics of binding of mannitol to enzyme IImtl embedded in the membrane of vesicles with an inside-out or a right-side-out orientation were analyzed at 4 degrees C in the absence of the phosphoryl group donor, P-HPr. The binding to the right-side-out oriented vesicles equilibrated too fast to be monitored by the flow dialysis technique. On the other hand, with the inside-out oriented membrane vesicles two conformational changes of the enzyme could be detected kinetically. One change involved a recruitment of binding sites from a state of the enzyme where the binding sites were inaccessible from the cytoplasmic volume. The second change involved a conformational change of the enzyme that followed upon the initial binding to the cytoplasmic-facing binding site leading to a state with a higher affinity for mannitol. Equilibrium binding to the inside-out and right-side-out oriented membrane vesicles at 4 degrees C indicated that the two transitions did not represent the translocation of the binding site, free and with mannitol bound to it, to the other side of the membrane. Instead, a model is proposed in which the conformational changes represent transitions from states with the binding pocket opened to the cytoplasmic side of the membrane to occluded states of the enzyme in which the binding sites, with or without mannitol bound, are not accessible to either side of the membrane.  相似文献   

5.
Purified mannitol-specific enzyme II (EIImtl), in the presence of the detergent Lubrol, catalyzes the phosphorylation of mannitol from P-HPr via a classical ping-pong mechanism involving the participation of a phosphorylated EIImtl intermediate. This intermediate has been demonstrated by using radioactive phosphoenolpyruvate. Upon addition of mannitol, at least 80% of the enzyme-bound phosphoryl groups can be converted to mannitol 1-phosphate. The EIImtl concentration dependence of the exchange reaction indicates that self-association is a prerequisite for catalytic activity. The self-association can be achieved by increasing the EIImtl concentration or at low concentrations of EIImtl by adding HPr or bovine serum albumin. The equilibrium is shifted toward the dissociated form by mannitol 1-phosphate, resulting in a mannitol 1-phosphate induced inhibition. Mannitol does not affect the association state of the enzyme. Both mannitol and mannitol 1-phosphate also act as classical substrate inhibitors. The apparent Ki of each compound, however, is approximately equal to its apparent Km, suggesting that mannitol and mannitol 1-phosphate bind at the same site on EIImtl. Due to strong inhibition provided by mannitol and mannitol 1-phosphate in the exchange reaction, the kinetics of this reaction cannot be used to determine whether the reaction proceeds via a ping-pong or an ordered reaction mechanism.  相似文献   

6.
The assignment of the side-chain NMR resonances and the determination of the three-dimensional solution structure of the C10S mutant of enzyme IIBcellobiose (IIBcel) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli are presented. The side-chain resonances were assigned nearly completely using a variety of mostly heteronuclear NMR experiments, including HCCH-TOCSY, HCCH-COSY, and COCCH-TOCSY experiments as well as CBCACOHA, CBCA(CO)NH, and HBHA(CBCA)(CO)NH experiments. In order to obtain the three-dimensional structure, NOE data were collected from 15N-NOESY-HSQC, 13C-HSQC-NOESY, and 2D NOE experiments. The distance restraints derived from these NOE data were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In an iterative procedure, additional NOE assignments were derived from the calculated structures and new structures were calculated. The final set of structures, calculated with approximately 2000 unambiguous and ambiguous distance restraints, has an rms deviation of 1.1 A on C alpha atoms. IIBcel consists of a four stranded parallel beta-sheet, in the order 2134. The sheet is flanked with two and three alpha-helices on either side. Residue 10, a cysteine in the wild-type enzyme, which is phosphorylated during the catalytic cycle, is located at the end of the first beta-strand. A loop that is proposed to be involved in the binding of the phosphoryl-group follows the cysteine. The loop appears to be disordered in the unphosphorylated state.  相似文献   

7.
1. A method is described for measuring the rate of phosphoenolpyruvate-dependent phosphotransferase activity for a variety of hexoses in toluene-treated suspensions of Escherichia coli. 2. The specific activities of the phosphotransferases that catalyse the phosphorylation of hexoses are greatly affected by the carbon source for growth. 3. In all strains of E. coli tested, fructose phosphotransferase activity is induced by growth on fructose. 4. Strains of E. coli differ greatly in the rate at which they phosphorylate glucose, but all strains possess at least a low glucose phosphotransferase activity under any tested condition of growth. Glucose phosphotransferase activity is further induced by growth on glucose; this does not occur in a mutant that lacks the ability to take up methyl alpha-d-[(14)C]glucopyranoside and hence grows poorly on glucose. 5. When growing on fructose, two strains of E. coli synthesize the inducible glucose phosphotransferase system gratuitously, and to specific activities higher than observed during growth on glucose. A phosphotransferase catalysing the phosphorylation of mannose is similarly induced.  相似文献   

8.
The mannitol transport protein (EIImtl) carries out translocation with concomitant phosphorylation of mannitol from the periplasm to the cytoplasm, at the expense of phosphoenolpyruvate (PEP). The phosphoryl group which is needed for this group translocation is sequentially transferred from PEP via two phosphorylation sites, located exclusively on the C-terminal cytoplasmic domain, to mannitol. Oligonucleotide-directed mutagenesis was used to investigate the precise role of these sites in phosphoryl group transfer, by producing specific amino acid substitutions. The first phosphorylation site, His-554 (P1), was replaced by Ala, which renders the EII-H554A completely inactive in PEP-dependent mannitol phosphorylation, but not in mannitol/mannitol 1-phosphate exchange. The P2 site mutant, EII-C384S, was inactive both in the mannitol phosphorylation reaction and in the exchange reaction, due to replacement of the essential Cys-384 by Ser. Although EII-H554A and EII-C384S were both catalytically inactive in the PEP-dependent phosphorylation, EII-C384S was able to restore up to 55% of the wild-type mannitol phosphorylation activity with the EII-H554A mutant, indicating a direct phosphotransfer between two subunits. These phosphorylation data together with the data obtained from mannitol/mannitol phosphate exchange kinetics, after mixing EII-H554A and EII-C384S, indicated the formation of functionally stable heterodimers, which consist of an EII-H554A and an EII-C384S monomer.  相似文献   

9.
Sulfhydryl reagents affected the binding properties of the translocator domain, NIII, of enzyme IImtl in two ways: (i) the affinity for mannitol was reduced, and (ii) the exchange rate of bound and free mannitol was increased. The effect on the affinity was very much reduced after solubilization of enzyme IImtl in the detergent decylPEG. The effects were caused exclusively by reaction of the sulfhydryl reagents with the cysteine residue at position 384 in the primary sequence. Interaction between two domains is involved, since Cys384 is located in the cytoplasmic domain, CII. When Cys384 was mutated to serine, the enzyme exhibited the same binding properties as the chemically modified enzyme. The data support our proposal that phosphorylation of enzyme IImtl drastically reduces the activation energy for the translocation step through interaction between domains CII and NIII [Lolkema J. S., ten Hoeve-Duurkens, R. H., Swaving Dijkstra, D., & Robillard, G. T. (1991) Biochemistry (preceding paper in this issue)]. Functional interaction between the translocator domain, NIII, and domain CI was investigated by phosphorylation of His554, located in domain CI, in the C384S mutant. No effect on the binding properties was observed. In addition, the binding properties were insensitive to the presence of the soluble phosphotransferase components enzyme I and HPr.  相似文献   

10.
The determination by NMR of the solution structure of the phosphorylated enzyme IIB (P-IIB(Chb)) of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli is presented. Most of the backbone and side-chain resonances were assigned using a variety of mostly heteronuclear NMR experiments. The remaining resonances were assigned with the help of the structure calculations.NOE-derived distance restraints were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In addition, combinations of ambiguous restraints were used to resolve ambiguities in the NOE assignments. By combining sets of ambiguous and unambiguous restraints into new ambiguous restraints, an error function was constructed that was less sensitive to information loss caused by assignment uncertainties. The final set of structures had a pairwise rmsd of 0.59 A and 1.16 A for the heavy atoms of the backbone and side-chains, respectively.Comparing the P-IIB(Chb) solution structure with the previously determined NMR and X-ray structures of the wild-type and the Cys10Ser mutant shows that significant differences between the structures are limited to the active-site region. The phosphoryl group at the active-site cysteine residue is surrounded by a loop formed by residues 10 through 16. NOE and chemical shift data suggest that the phosphoryl group makes hydrogen bonds with the backbone amide protons of residues 12 and 15. The binding mode of the phosphoryl group is very similar to that of the protein tyrosine phosphatases. The differences observed are in accordance with the presumption that IIB(Chb) has to be more resistant to hydrolysis than the protein tyrosine phosphatases. We propose a proton relay network by which a transfer occurs between the cysteine SH proton and the solvent via the hydroxyl group of Thr16.  相似文献   

11.
The enzyme IImannitol (EIImtl) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) catalyses the uptake and concomitant phosphorylation of mannitol by bacteria; it is specified by the gene mtlA. MtlA is located near the genes mtlF and mtlD in the staphylococcal genome, encoding the enzyme IIImtl and the mannitol-1-phosphate dehydrogenase, respectively. We present the cloning of the whole operon by a novel complementation system which is generally suitable for cloning Gram-positive PTS genes. The nucleotide sequence of a 2.5-kbp subclone spanning mtlA has been determined. From the deduced amino acid sequence, it is predicted that the membrane-protein EIImtl consists of 505 amino acid residues (54112 Da). The protein has the expected hydropathy profile of an integral-membrane protein. The NH2-terminal part of the enzyme resides within the membrane, whereas the COOH-terminus of the enzyme has the properties of a soluble protein. Comparison with the known amino acid sequence of EIImtl of Escherichia coli [Lee, C. A. & Saier, M. H. (1983) J. Biol. Chem. 258, 10761-10767] showed significant similarity. The motif containing the cysteine, which is the putative second phosphorylation site in EIImtl of E. coli [Pas, H. H. & Robillard, G. T. (1988) Biochemistry 27, 5835-5839], is well conserved in EIImtl of Staphylococcus carnosus. Chemical modification of the single active site cysteine residue by Ellman's reagent leads to total inactivation, which can be reversed by treatment with 2-mercaptoethanol.  相似文献   

12.
J S Lolkema  G T Robillard 《Biochemistry》1990,29(43):10120-10125
The original proposal of Saier stating that P-enolpyruvate-dependent mannitol phosphorylation is catalyzed by the monomeric form of the bacterial phosphotransferase enzyme IImtl, which would be the form predominantly existing in the phospholipid bilayer, whereas mannitol/mannitol-P exchange would depend on the transient formation of functional dimers, is refuted [Saier, M.H. (1980) J. Supramol. Struct. 14, 281-294]. The correct interpretation of the proportional relation between the rate of mannitol phosphorylation in the overall reaction and the enzyme concentration is that enzyme IImtl is dimeric under the conditions employed. Differences measured in the enzyme concentration dependency of the overall and exchange reactions were caused by different assay conditions. The dimer is favored over the monomer at high ionic strength and basic pH. Mg2+ ions bind specifically to enzyme IImtl, inducing dimerization. A complex formed by mixing inorganic phosphate, F-, and Mg2+ at sufficiently high concentrations inhibits enzyme IImtl, in part, by dissociation of the dimer. Enzyme IImtl was dimeric in 25 mM Tris, pH 7.6, and 5 mM Mg2+ over a large enzyme concentration range and under many different turnover conditions. The association/dissociation equilibrium was demonstrated in phosphate bufers, pH 6.3. The dimer was the most active form both in the overall and in the exchange reaction under the conditions assayed. The monomer was virtually inactive in mannitol/mannitol-P exchange but retained 25% of the activity in the overall reaction.  相似文献   

13.
Mutants of Escherichia coli devoid of the membrane-spanning proteins PtsG and PtsMP, which are components of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and which normally effect the transport into the cells of glucose and mannose, do not grow upon or take up either sugar. Pseudorevertants are described that take up, and grow upon, mannose at rates strongly dependent on the mannose concentration in the medium (apparent Km > 5 mM); such mutants do not grow upon glucose but are derepressed for the components of the fructose operon. Evidence is presented that mannose is now taken up via the fructose-PTS to form mannose 6-phosphate, which is further utilized for growth via fructose 6-phosphate and fructose 1,6-bisphosphate.  相似文献   

14.
15.
Mutants of Escherichia coli K-12 were isolated which lack the normal phosphotransferase system-dependent catabolic pathway for D-mannitol (Mtl). In some mutants the pts genes for the general proteins enzyme I and histidine protein of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase systems were deleted. Other mutants expressed truncated mannitol-specific enzymes II (II(Mtl)) which lacked the IIA(Mtl) or IIBA(Mtl) domain(s), and the mtlA genes originated either from E. coli K-12 or from Klebsiella pneumoniae 1033-5P14. The dalD gene from Klebsiella oxytoca M5a1 was cloned on single-copy plasmids and transformed into the strains described above. This gene encodes an NAD-dependent D-arabinitol dehydrogenase (DalD) which converts D-arabinitol into D-xylulose and also converts D-mannitol into D-fructose. The different strains were used to isolate mutations which allow efficient transport of mannitol through the nonphosphorylated II(Mtl) complexes by selecting for growth on this polyhydric alcohol. More than 40 different mutants were analyzed to determine their ability to grow on mannitol, as well as their ability to bind and transport free mannitol and, after restoration of the missing domain(s), their ability to phosphorylate mannitol. Four mutations were identified (E218A, E218V, H256P, and H256Y); all of these mutations are located in the highly conserved loop 5 of the IIC membrane-bound transporter, and two are located in its GIHE motif. These mutations were found to affect the various functions in different ways. Interestingly, in the presence of all II(Mtl) variants, whether they were in the truncated form or in the complete form, in the phosphorylated form or in the nonphosphorylated form, and in the wild-type form or in the mutated form, growth occurred on the low-affinity analogue D-arabinitol with good efficiency, while only the uncoupled mutated forms transported mannitol at a high rate.  相似文献   

16.
The phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system enzyme IISCR, specific for and regulated by sucrose, was analyzed in derivatives of Escherichia coli K-12 carrying the sucrose plasmid pUR404. Enzyme IIScr, coded for by gene scrA of the plasmid, depended for its transport and phosphorylation activity directly on the phosphotransferase system enzyme IIIGlc, Scr, coded for by the chromosomal gene crr.  相似文献   

17.
18.
19.
G T Robillard  M Blaauw 《Biochemistry》1987,26(18):5796-5803
The mannitol-specific enzyme II (EII), purified free of phospholipid, exhibits a concentration dependence in its specific activity with P-HPr and mannitol as the donor and acceptor substrates, respectively. This concentration dependence, previously observed only in the case of mannitol----mannitol phosphate exchange reaction, indicates that an oligomeric form of the enzyme is responsible for catalyzing the phosphorylation reaction (P-HPr + mannitol----mannitol-P + HPr) as well as the exchange reaction. Kinetic analysis revealed that the monomeric enzyme has a much lower specific activity than the associated species. The specific activity can be increased by raising the steady-state level of phosphorylation of EII and also by adding phospholipid, demonstrating that phosphorylation and the binding of phospholipid facilitate the association process. Kinetic measurements and fluorescence energy transfer measurements demonstrate a strong preference of EII for phospholipids with specific head group and fatty acid composition.  相似文献   

20.
Purified mannitol-specific enzyme II (EII) from Escherichia coli was reconstituted into phospholipid vesicles with the aid of a detergent-dialysis procedure followed by a freeze-thaw sonication step. The orientation of EII in the proteoliposomes was random. The cytoplasmic moiety of the inverted EII could be removed with trypsin without effecting the integrity of the liposomal membrane. This enabled us to study the two different EII orientations independently. The population of inverted EII molecules was monitored by measuring active extrusion of mannitol after the addition of phosphoenolpyruvate, EI, and histidine-containing phosphocarrier protein (HPr) at the outside of the vesicles. The population of correctly oriented EII molecules was monitored by measuring active uptake of mannitol with internal phosphoenolpyruvate, EI, and HPr. A low rate of facilitated diffusion of mannitol via the unphosphorylated carrier could be measured. On the other hand, a high phosphorylation activity without translocation was observed at the outside of the liposomes. The kinetics of the phosphoenolpyruvate-dependent transport reaction and the nonvectorial phosphorylation reaction were compared. Transport of mannitol into the liposomes via the correctly oriented EII molecules occurred with a high affinity (Km, lower than 10 microM) and with a relatively low Vmax. Phosphorylation at the outside of the liposomes catalyzed by the inverted EII molecules occurred with a low affinity (Km of about 66 microM), while the maximal velocity was about 10 times faster than the transport reaction. The latter observation is kinetic proof for the lack of strict coupling between transport and phosphorylation in these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号