首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of14CO2 production from [U–14C]glutamate, [U–14C]aspartate and [1–14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of -ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons.  相似文献   

2.
Abstract— A technique for the isolation of pure neuronal perikarya and intact glial cells from cerebral cortex has been developed for routine use. The yield of neuronal perikarya and glial cells was greater from highly immature (5–10 days) rat cerebral cortex than from the cortex of older rats (18–43 days). The perikarya/glia yield ratio decreased with age indicating that, as the glial population matured, the procedure succeeded in isolating a gradually smaller proportion of the existing neurons. The perikarya/glia ratio was highest for the 5-day-old cortex in which no mature glial cells could be identified. After a 10-min pulse in vivo of intrathecally injected [14C]phenylalanine, the specific radioactivity of the neuronal proteins was higher than that of the glial proteins in the 5-, 10- and 18-day-old rat but was lower in the 43-day-old rat. The values for absolute specific radioactivity of the 14C-labelled proteins in both cell types were greater, the younger the brain. The 14C-labelling of neuronal and glial proteins in the 18-day-old rat was assessed in vivo as a function of time by determining the incorporation of [14C]phenylalanine into such proteins at 5, 10, 20 and 45 min after administration of the amino acid. The rate of incorporation of [14C]phenylalanine into the glial cells was faster than into the neurons since higher specific radioactivities of the glial proteins could be achieved at earlier times. Also, a biphasic pattern of 14C-labelling of the glial proteins was noted, suggesting, perhaps, a sequential involvement of the oligodendrocytes and astrocytes. Homogenates of prelabelled neuronal perikarya were fractionated into the nuclear, mitochondrial microsomal and soluble cell sap fractions. In the 18-day-old cerebral cortex, the proteins of the microsomal fraction exhibited the highest specific radioactivity at the end of 10 min, whereas by 20 min proteins of the mitochondrial fraction were most highly labelled. The specific radioactivity of the nuclear proteins increased over the entire 45-min experimental period. On the contrary, the proteins of the soluble cell sap, in which the specific radioactivity was at all times by far the lowest, were maximally labelled by 5 min. Examination of the labelling of the neuronal subcellular fractions as a function of age revealed that at 10 min after administration of [14C]phenylalanine, the specific radioactivities of all 14C-labelled proteins were highest in the youngest (5-day-old) neurons. The proteins of the microsomal fraction were most rapidly labelled at all ages. During this interval the proteins of the soluble cell sap were only moderately labelled in the 5-day-old neurons and were totally unlabelled in the 43-day-old neurons, indicating age-dependent differences in the rate of utilization of the amino acid precursor by the neurons.  相似文献   

3.
Summary Glial uptake of serotonin and dopamine was studied in primary cultures of the median raphe nucleus and cerebellum by using consecutive demonstration of monoamine fluorescence and glial fibrillary acidic protein immunofluorescence. Most of the glial cells taking up monoamines were glial fibrillary acidic protein positive. Astrocytes with a strong immunoreactivity exhibited monoamine fluorescence only occasionally, although such cells did take up L-dopa readily. Glial fibrillary acidic protein negative cells — morphologically identified as astrocytes — were seen to exhibit monoamine fluorescence after exposure. Glial uptake of serotonin at a concentration of 10–4 M was detected in cerebellar cultures but not in cultures from the median raphe nucleus. When the concentration was 10–3 M uptake of serotonin took place in both the areas but was weaker in cultures from the median raphe nucleus. At concentrations greater than 10–5 M glial uptake of dopamine was detected in cultures from both the regions studied. No region dependent differences in glial uptake of dopamine was demonstrated, however. Based on these observations astrocytes and astrocyte-like glial cells take up dopamine and serotonin. Also glial cells with a remarkably high content of the glial fibrillary acidic protein are more resistant to monoamine uptake than cells exhibiting less intense or no glial fibrillary acidic protein immunofluorescence. The existence of regional differences in uptake of serotonin between the median raphe nucleus and cerebellum suggests that glial uptake of monoamines is not an entirely passive mechanism but may be actively controlled by glial cells in a region dependent manner.  相似文献   

4.
Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using “sniff-cell” approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes in the neocortex.  相似文献   

5.
Patch clamp experiments were conducted on satellite glial cells attached to the cell body of neurons in place within the nervous system of the snail Helix pomatia. The glial cells were studied using cell-attached and whole-cell patch clamp configurations while the underlying neurons were under current or voltage clamp control.The resting potential of the glial cells (–69 mV) was more negative than that of the underlying neurons (–53 mV), due to their high K+ selectivity. Densely packed K+ channels were present, some of which were active at the cell resting potential. Neuronal firing elicited a cumulative depolarization of the glial cells. Large K+ currents flowing from V-clamped neurons depolarized the glial layer by up to 30 mV. The glial depolarization was directly correlated with the size of the neuronal K+ current. The glial cells recovered their resting potential within 2–5 sec. The neuronal depolarization induced a delayed (20–30 sec) and persistent (3–4 min) increase in the glial K+ channel opening probability. Likewise, pulses of K+ (20–50 mM)-rich saline activated the glial channels, unless the underlying neuron was held hyperpolarized. In low Ca2+-high Mg2+ saline, neuron depolarization and K+-rich saline did not activate the glial K+ channels.These data indicate that a calcium-dependent signal released from the neuronal cell body was involved in glial channel regulation. Neuron-induced channel opening may help eliminate the K+ ions flowing from active neurons.I. Gommerat is recipient of a fellowship from the Ministère de la Recherche et de la Technologie.This work was supported by the CNRS and by a grant from the Fondation pour la Recherche Médicale. We would like to thank Mrs. M. André and Mr. G. Jacquet for technical assistance and Mrs. J. Blanc for improving the English.  相似文献   

6.
Lipoprotein lipase (LPL) is involved in regulation of fatty acid metabolism, and facilitates cellular uptake of lipoproteins, lipids and lipid-soluble vitamins. We evaluated LPL distribution in healthy and Alzheimer’s disease (AD) brain tissue and its relative levels in cerebrospinal fluid. LPL immunostaining is widely present in different neuronal subgroups, microglia, astrocytes and oligodendroglia throughout cerebrum, cerebellum and spinal cord. LPL immunoreactivity is also present in leptomeninges, small blood vessels, choroid plexus and ependymal cells, Schwann cells associated with cranial nerves, and in anterior and posterior pituitary. In vitro studies have shown presence of secreted LPL in conditioned media of human cortical neuronal cell line (HCN2) and neuroblastoma cells (SK-N-SH), but not in media of cultured primary human astrocytes. LPL was present in cytoplasmic and nuclear fractions of neuronal cells and astrocytes in vitro. LPL immunoreactivity strongly associates with AD-related pathology, staining diffuse plaques, dystrophic and swollen neurites, possible Hirano bodies and activated glial cells. We observed no staining associated with neurofibrillary tangles or granulovacuolar degeneration. Granule cells of the dentate gyrus and the associated synaptic network showed significantly reduced staining in AD compared to control tissue. LPL was also reduced in AD CSF samples relative to those in controls.  相似文献   

7.
Summary The Organum vasculosum laminae terminalis (OVLT) of the duck is lined innerly by specialized ependymal cells (tanycytes) and outwardly by a well-developed superficial vascular network, the capillaries of which often show a fenestrated endothelium. The OVLT also includes glial cells, internal non-fenestrated capillaries, bundles of fine nerve fibers and three groups of axonal swellings. One type contains granulations of 1000–1400 Å in diameter as well as 300–500 Å clear vesicles. The second type exhibits granulations and dense core vesicles of 500–800 Å in diameter along with small electron-lucent vesicles having diameters of 300–400 Å. In the third type, exclusively clear vesicles 300–600 Å in diameter are found. Asymmetrical synapses on dendrites and neuronal perikarya are found at every level of the organ. In the most external zone, the interposition of tanycyte endings sometimes allows neurosecretory axons to reach the parenchymal basement membrane (basal lamina).When tritiated molecules (amino acids or monoamines) are administered either in vitro by incubation or in vivo by intraventricular injections, radioautographic grains are observed over the tanycyte perikarya. Although this labeling is observed at every time point following the administration of the tracers, within three minutes only 3H-GABA appears to be concentrated in the cytoplasmic processes of the tanycytes. 3H-noradrenaline and 3H-serotonin are taken up and retained by some axons of the second type described above. Noradrenergic fibers are primarily localized in the inner zone of the OVLT where they display axodendritic synaptic contacts. Serotonergic fibers appear sparsely distributed in the OVLT but are more numerous in the lateral edges of the organ where synaptic differentiations on dendrites or on dendritic spines are also observed.It is concluded that the duck OVLT probably displays a neuroendocrine activity. Uptake and selective transport of exogenous molecules by tanycytes are also suggested by the present radioautographic observations. Finally, monoaminergic innervation is discussed at the OVLT level with special reference to the occurrence of serotonergic synapses.Supported by the Département de Biologie du C.E.A., and the I.N.S.E.R.M. (C.R.A.T., 74.1.438.45)  相似文献   

8.
Astrocytes play active roles in the regulation of synaptic transmission. Neuronal excitation can evoke Ca2+ transients in astrocytes, and these Ca2+ transients can modulate neuronal excitability. Although only a subset of astrocytes appears to communicate with neurons, the types of astrocytes that can regulate neuronal excitability are poorly characterized. We found that ∼30% of astrocytes in the brain express transient receptor potential vanilloid 4 (TRPV4), indicating that astrocytic subtypes can be classified on the basis of their expression patterns. When TRPV4+ astrocytes are activated by ligands such as arachidonic acid, the activation propagates to neighboring astrocytes through gap junctions and by ATP release from the TRPV4+ astrocytes. After activation, both TRPV4+ and TRPV4 astrocytes release glutamate, which acts as an excitatory gliotransmitter to increase synaptic transmission through type 1 metabotropic glutamate receptor (mGluR). Our results indicate that TRPV4+ astrocytes constitute a novel subtype of the population and are solely responsible for initiating excitatory gliotransmitter release to enhance synaptic transmission. We propose that TRPV4+ astrocytes form a core of excitatory glial assembly in the brain and function to efficiently increase neuronal excitation in response to endogenous TRPV4 ligands.  相似文献   

9.
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K+.  相似文献   

10.
The hypothalamus of the opossum (Didelphis virginiana), the armadillo (Dasypus novemcinctus mexicanus), and the cat (Felis domestica) was studied using Del Rio Hortega's silver carbonate technique, as modified by Scharenberg ('60). This technique demonstrates astrocytes, oligodendroglia, and neuronal perikarya, but does not impregnate microglia. The morphology of macroglia was observed in ten comparable nuclei in each of the three species. The subpial and subependymal areas were also examined. Astrocytes display more cell body angularity and have more processes in most hypothalamic regions of the cat when compared to similar regions of the opossum and armadillo. In the anterior hypothalamic nucleus, the ventromedial and the dorsomedial hypothalamic nuclei, and the medial mammillary nucleus of all three species, astrocytes send processes to neurons, but neuronal and astrocytic perikarya are usually not directly contiguous. However, oligodendrocytes in a perisomatic position on neurons are a consistent feature in these nuclei. A closer relationship appears to exist between astrocytes and neurons in the neurosecretory nuclei. In the supraoptic nucleus and paraventricular nucleus of all three species a basket-like structure, designated a ?pericellular envelope”? was observed surrounding neuronal perikarya. This structure is composed of astrocytic and oligodendroglial cell bodies and processes, and is most highly developed in the cat. A dense astrocytic plexus was observed in the suprachiasmatic nucleus of the cat, and in the comparable nuclei of the armadillo and opossum. The most prominent macroglial cell type of the lateral hypothalamic and lateral mammillary nuclei of all three species is the interfascicular oligodendrocyte. The posterior hypothalamic nucleus of each species has many perisomatic oligodendrocytes, and in the armadillo and cat astrocytes are closely related to the larger neurons. A subpial plexus, consisting of a palisade of small glial cells with many processes, is present in the hypothalamus of the three species. Ependymal cells have long projecting processes throughout the length of the third ventricle in the armadillo hypothalamus, but such processes are only apparent in the region of the infundibular nucleus and median eminence in the opossum and cat.  相似文献   

11.
Summary The ability of liver cells to control their volume in the presence of ouabain has been studied in tissue slices that were recovering at 38°C from a period of swelling at 1°C. Morphological observations were made in conjunction with measurements of the net movements of water and ions. Extrusion of water in the presence of ouabain (2mm) was accompanied by a net loss of Na+ and Cl and by the formation of characteristic, rounded vesicles in the peri-canalicular regions of the hepatocytes; bile canaliculi were patent. When incubation was carried out in a medium in which either NO 3 or SO 4 2– replaced Cl, ouabain-resistant water extrusion was prevented and the cytoplasmic vesicles normally found with ouabain were almost totally absent. When these slices were subsequently transferred to Cl medium with oubain, extrusion of intracellular water was initiated and cytoplasmic vesicles reappeared. Replacement of medium Na+ by Li+ mimicked the effects of ouabain on water and ion movements and ultrastructure. In addition, the ouabain-resistant extrusion of water and Cl was reduced and there was some diminution in the number of vesicles induced by ouabain. Furosemide (2mm) had little effect on water movement or ultrastructure in the absence of ouabain, but it slowed the net water loss and substantially reduced the formation of cytoplasmic vesicles in the presence of ouabain. The results show a close relationship between ouabain-resistant water extrusion and the formation of the cytoplasmic vesicles that are characteristic of treatment with ouabain. They further suggest that a cotransport of Na+ and Cl forms an important part of the mechanism underlying ouabain-resistant water extrusion and, specifically, that this cotransport may take place across the membranes of the cytoplasmic vesicles.  相似文献   

12.
This paper investigates the kinetic parameters of Na+–K+-ATPase in glial, neuronal, and synaptosomal enriched fractions isolated from rabbit cerebral cortex. Under normal conditions, kinetic parameters-Vmax and K 0.5 K+ -of Na+–K+-ATPase are the same in the three fractions, suggesting that this enzyme behaves as the same molecular entity. Following a cryogenic lesion, the alterations of these parameters appear to be different in the different fractions. These data suggest that the same enzyme exhibits various responses when exposed to the same pathological event. The dissimilar lipid composition of the Na+–K+-ATPase environment, and/or different adaptative responses to abnormal ion concentrations in glial, neuronal, and synaptosomal fractions could account for these different responses.  相似文献   

13.
Clonal lines of glial, neuronal, and nonneural origin accumulate choline via a high-affinity carrier-mediated transport system withK m in the range of 10–14 M. These cell lines also accumulate choline by a second system that is not saturable at 10 mM choline, and that may represent diffusion. The transport of choline in glial cells differs from that seen in neuronal cells with respect to its Na+ requirement. The omission of Na+ from the incubation medium reduces high-affinity choline transport in neuronal cells and enhances it in glial cells. Kinetic analysis of the data indicates that reversible cholinesterase inhibitors and hemicholinium-3 (HC-3) inhibit the high-affinity transport system for choline. On the other hand, the diffusional or low-affinity component of choline transport in either cell type appears to have no Na+ requirement and is unaffected by either cholinesterase inhibitors or 10–4 M HC-3. The neuronal-glial differences in the Na+ requirement of choline transport may be related to the coupling of transport to choline metabolism, which differs in the two cell types. The presence of a high-affinity transport system for choline in clonal glial lines used as models of normal glia suggest that glia may modulate the availability of choline for acetylcholine synthesis at cholinergic synapses.  相似文献   

14.
Of the primary neuronal tissue cultures (glia cell, neuronal cells, mixed and retina cultures), the neuronal cells of (cells + medium) display the highest total porphyrin production from 10–3 M delta-aminolaevulinic acid (ALA). In the presence of 10–3–10–6 M melatonin, the quantity of total prophyrins produced by the neuronal cultures decreases in inverse proportion to the concentration. Oxytocin, lysine-vasopressin, CCK-8 sulphate ester and des-Tyr-gamma-endorphin in concentrations of 10–5 and 10–6 M block the porphyrin synthesis of the glia cells and display different effects on that of the neuronal cells. They enhance the total porphyrin synthesis of the cell cultures, with the exception of 10–5 M des-Tyr-gamma-endorphin, which exerts an inhibitory effect on the glia cells.  相似文献   

15.
Leech blood apparently contains considerably less chloride than generally used in physiological experi ments. Instead of 85–130 mM Cl used in experimental salines, leech blood contains around 40 mM Cl and up to 45 mM organic anions, in particular malate. We have reinvestigated the distribution of Cl across the cell membrane of identified glial cells and neurones in the central nervous system of the leech Hirudo medicinalis L., using double-barrelled Cl- and pH-selective micro electrodes, in a conventional leech saline, and in a saline with a low Cl concentration (40 mM), containing 40 mM malate. The interference of anions other than Clto the response of the ion-selective microelectrodes was estimated in Cl-free salines (Cl replaced by malate and/or gluconate). The results show that the absolute intracellu lar Cl activities (aCli) in glial cells and neurones, but not the electrochemical gradients of Cl across the glial and the neuronal cell membranes, are altered in the low Cl, malate-based saline. In Retzius neurones, aCli is lower than expected from electrochemical equilibrium, while in pressure neurones and in neuropil glial cells, aCli is distributed close to its equilibrium in both salines, re spectively. The steady-state intracellular pH values in the glial cells and Retzius neurones are little affected (0.1 pH units) in the low Cl, malate-based saline.  相似文献   

16.
Summary 1. The purpose of this study was (a) to identify if astrocytes show a similar non-Nernstian depolarization in low K+ or low Ca2+ solutions as previously found in human glial and glioma cells, and (b) to analyze the influence of the K+ conductance on the membrane potential of astrocytes.2. The membrane potential (Em) and the ionic conductance were studied with whole-cell patch-clamp technique in neonatal rat astrocytes (5–9 days in culture) and in human glioma cells (U-251MG).3. In 3.0 mM K+, Em was –75 ± 1.0 mV (mean ± SEM,n=39) in rat astrocytes and –79 ± 0.7 mV (n=5) in U-251MG cells. In both cell types Em changed linearly to the logarithm of [K+]0 between 3.0 and 160 mM K+. K+ free medium caused astrocytes to hyperpolarize to –93 ± 2.7 mV (n=21) and U-251MG cells to depolarize to –27 ± 2.1 mV (n=3).4. The I-E curve did not show inward rectification in astrocytes at this developmental stage. The slope conductance (g) exhibited only a small decrease (–19%) in K+ free solution and no significant change in 160 mM K+.5. Ba2+ (1.0 mM) depolarized astrocytes to –45 ± 2.9 mV (n=11), decreasing the slope conductance (g) by 42.4 ± 8.3% (n=11). Ca2+ free solution depolarized astrocytes to –53 ± 3.4 mV (n=12) and resulted in a positive shift of the I-E curve, increasing g by 15.3 ± 8.2% (n=8).6. Calculations indicated that a block of K+ channels explains the depolarizing effect of Ba2+. The effects of K+ free or Ca2+ free solutions on Em can be explained by a transformation of K+ channels to non-specific leakage channels. That astrocytes show a different reaction to low K+ than glioma cells can be related to the lack of inwardly rectifying K+ channels in astrocytes at this developmental stage.  相似文献   

17.
The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×104 cells/mL (8.9×103 cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).  相似文献   

18.
Mechanisms underlying intracellular calcium signals in Bergmann glial cells evoked by various neurotransmitters were investigated in experiments on cerebellar slices acutely isolated from 30-day-old mice. [Ca2+] in values were measured by means of a Ca2+-sensitive fluorescent probe fura-2. Extracellular application of ATP (10–100 µM), histamine (10–100 µM), or noradrenaline (or adrenaline, 0.1–10.0 µM) caused a temporary increase in cytoplasmic Ca2+ concentrations. The effect persisted in Ca2+-free extracellular solution and was blocked with thapsigargin (500 nM) or a specific blocker of the inositol-1,4,5-trisphosphate-sensitive intracellular channels heparin. Based on the pharmacological analysis, we postulate the involvement of P2 purinoreceptors, 1-adrenoreceptors, and H1 histamine receptors in an agonist-activated increase in [Ca2+] in in Bergmann glia. Thus, ATP, monoamines, or histamine induce calcium signal generation in Bergmann glial cells via activation of Ca2+ release from the inositol-1,4,5-trisphosphate-sensitive internal stores.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 417–419, November–December, 1994.  相似文献   

19.
The mechanism responsible for the ability of bradykinin to cause calcium-dependent release of glutamate from astrocytes in vitro was investigated. The glutamate transport inhibitor, dihydrokainate, did not block bradykinin-induced glutamate release, and bradykinin did not cause cell swelling. These data exclude the involvement of glutamate transporters or swelling mechanisms as mediating glutamate release in response to bradykinin. α-Latrotoxin (3 nM), a component of black widow spider venom, stimulated calcium-independent glutamate release from astrocytes. Since α-latrotoxin induces vesicle fusion and calcium-independent neuronal neurotransmitter release, our data suggest that astrocytes may release neurotransmitter using a mechanism similar to the neuronal secretory process.  相似文献   

20.
Summary Elementary Na+ currents were recorded at 19°C in cell attached and inside-out patches from cultured neonatal rat cardiocytes in order to study the effect of cAMP and other 6-aminopurines.The treatment of the cardiocytes with db-cAMP (1×10–3 mol/liter) led to a decline of reconstructed macroscopic peakI Na to 62±7.6% of the initial control value. This reduction in NP0 was mostly accompanied by a decrease in burst activity. Openstate kinetics were preserved even in DPI-modified, noninactivating Na+ channels. Since the stimulator of the adenylate cyclase, forskolin (1×10–6 mol/liter), evoked a similar pattern of response, the NP0 decrease can be considered as the functional correlate of Na+ channel phosphorylation brought about by cAMP-dependent protein kinase. As found in inside-out patches, cAMP (1×10–3 mol/liter) remained effective under cell-free conditions and reduced reconstructed macroscopic peakI NA to about 50% of the initial control value when the absence of Mg-ATP at the cytoplasmic membrane surface prevents phosphorylation reactions. A very similar response developed in the cytoplasmic presence of other 6-aminopurines including ATP (1×103 mol/liter), adenosine (1×10–4 mol/liter), adenine (1×10–5 mol/liter) and hypoxanthine (1×10–5 mol/liter). This susceptibility to adenine suggests that cardiac Na+ channelsin situ could sense intracellular fluctuations of adenine nucleotides, most likely of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号