首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunoglobulin G (IgG) binding ZZ domain of protein A from Staphylococcus aureus was fused to the N terminus of the polyhydroxyalkanoate (PHA) synthase from Cupriavidus necator. The fusion protein was confirmed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and mediated formation of ZZ domain-displaying PHA granules in recombinant Escherichia coli. The IgG binding capacity of isolated granules was assessed using enzyme-linked immunosorbent assay and could be enhanced by the overproduction of the ZZ-PHA synthase. ZZ-PHA granules enabled efficient purification of IgG from human serum.  相似文献   

2.
This study demonstrated that engineered polyhydroxyalkanoate (PHA) synthases can be employed as molecular tools to covalently immobilize enzymes at the PHA granule surface. The beta-galactosidase was fused to the N terminus of the class II PHA synthase from Pseudomonas aeruginosa. The open reading frame was confirmed to encode the complete fusion protein by T7 promoter-dependent overexpression. Restoration of PHA biosynthesis in the PHA-negative mutant of P. aeruginosa PAO1 showed a PHA synthase function of the fusion protein. PHA granules were isolated and showed beta-galactosidase activity. PHA granule attached proteins were analyzed and confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Surprisingly, the beta-galactosidase-PHA synthase fusion protein was detectable at a high copy number at the PHA granule, compared with PHA synthase alone, which was barely detectable at PHA granules. Localization of the beta-galactosidase at the PHA granule surface was confirmed by enzyme-linked immunosorbent assay using anti-beta-galactosidase antibodies. Treatment of these beta-galactosidase-PHA granules with urea suggested a covalent binding of the beta-galactosidase-PHA synthase to the PHA granule. The immobilized beta-galactosidase was enzymologically characterized, suggesting a Michaelis-Menten reaction kinetics. A Km of 630 microM and a Vmax of 17.6 nmol/min for orthonitrophenyl-beta-D-galactopyranoside as a substrate was obtained. The immobilized beta-galactosidase was stable for at least several months under various storage conditions. This study demonstrated that protein engineering of PHA synthase enables the manufacture of PHA granules with covalently attached enzymes, suggesting an application in recycling of biocatalysts, such as in fine-chemical production.  相似文献   

3.
For the first time a functional protein was fused to a PHA synthase resulting in PHA granule formation and display of the respective function at the PHA granule surface. The GFP reporter protein was N-terminally fused to the class I PHA synthase of Cupriavidus necator (PhaC) and the class II PHA synthase of Pseudomonas aeruginosa PAO1 (PhaC1), respectively, while maintaining PHA synthase activity and PHA granule formation. Fluorescence microscopy studies of GFP-PHA synthase attached to emerging PHA granules indicated that emerging PHA granules locate to cell poles and to midcell representing the future cell poles. A rapid oscillating movement of GFP-PHA synthase foci from pole to pole was observed. In cell division impaired Escherichia coli, PHA granules were localized between nucleoids at regular spacing suggesting that nucleoid occlusion occurred. Accordingly, anucleate regions of the E. coli mukB mutant showed no regular spacing, but PHA granules with twofold increased diameter were formed. First evidence was provided that the cell division and the localization of GFP-PHA synthase foci are in vivo co-located.  相似文献   

4.
Only the PHA synthase is required for formation of spherical intracellular PHA granules emerging at cell poles. This study aims to assign the polar targeting signal in the PHA synthase and to provide insight into molecular mechanisms of granule formation. Random in-frame insertion mutagenesis indicated dispensable and essential regions suggesting that only the N terminus (<100 aa) is dispensable and forms a random coil structure. The inactive PHA synthase (C319A) is still localized to cell poles, indicating that the nascent PHA chain does not serve as an anchor or signal for subcellular localization and granule formation. Deletion of the N terminus did neither affect subcellular localization nor PHA granule formation. The deletion of the hydrophobic C terminus (68 aa) did not impact on subcellular localization of the PHA synthase, but abolished PHA synthase activity. The structural protein PhaP1 was found to be not required for subcellular localization and initiation of granule formation. PhaP1 only localizes to the cell poles, when PHA granules are formed. These data suggested that the PHA synthase itself localizes to the cell poles via its core region (93-521 aa), which is structurally constraint and comprises the polar positional information for self-assembly of PHA granules at the cell poles.  相似文献   

5.
The first polyhydroxyalkanoic acid (PHA) synthase gene (phbCRr) of a Gram-positive bacterium was cloned from a genomic library of Rhodococcus ruber in the broad-host-range plasmid vector pRK404. The hybrid plasmid harboring phbCRr allowed the expression of polyhydroxybutyric acid (PHB) synthase activity and restored the ability of PHB synthesis in a PHB-negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phbCRr revealed an open reading frame of 1686 bp starting with the rare codon TTG and encoding a protein of relative molecular mass 61,371. The deduced amino acid sequence of phbCRr exhibited homologies to the primary structures of the PHA synthases of A. eutrophus and Pseudomonas oleovorans. Preparation of PHA granules by discontinuous density gradient centrifugation of crude cellular extracts revealed four major bands in an SDS polyacrylamide gel. A Mr 61,000 protein was identified as the PHA synthase of R. ruber by N-terminal amino acid sequence determination.  相似文献   

6.
Viral vectors displaying specific ligand binding moities such as scFv fragments or intact antibodies hold promise for the development of targeted gene therapy vectors. In this report we describe baculoviral vectors displaying either functional scFv fragments or the synthetic Z/ZZ IgG binding domain derived from protein A. Display on the baculovirus surface was achieved via fusion of the scFv fragment or Z/ZZ domain to the N-terminus of gp64, the major envelope protein of the Autographa californica nuclear polyhedrosis virus, AcNPV. As examples of scFv fragments we have used a murine scFv specific for the hapten 2-phenyloxazolone and a human scFv specific for carcinoembryonic antigen. In principle, the Z/ZZ IgG binding domain displaying baculoviruses could be targeted to specific cell types via the binding of an appropriate antibody. We envisage applications for scFv and Z/ZZ domain displaying baculoviral vectors in the gene therapy field.  相似文献   

7.

Background  

Polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR contains a DNA binding domain (DBD) and a PHA granule binding domain (GBD), it anchors to the promoter region of PHA granule-associated protein (PhaP) to repress phaP expression. However, PhaR will bind to PHB granules and be released from phaP promoter region when PHA granules are formed in vivo, initiating expression of phaP gene. Based on this regulatory mechanism, a bacterial two-hybrid system was developed: PhaR was separated into two parts: DBD was used to fuse with the bait, GBD with the prey, and phaP was replaced by a reporter gene lacZ. However, GBD protein expressed in vivo formed inclusion bodies. Thus, PhaP with strong binding ability to PHB granules was employed to replace GBD.  相似文献   

8.
Polyhydroxyalkanoate (PHA) synthase activity in Synechocystis sp. PCC6803 was increased two-fold by introducing the PHA biosynthetic genes of Ralstonia eutropha. The resulting recombinant Synechocystis sp. PCC6803 strain was subjected to conditions that favor PHA accumulation and the effects of various carbon sources were studied. In addition, the fine structure of both wild-type and recombinant Synechocystis sp. PCC6803 was examined using freeze-fracture electron microscopy technique. The PHA granules in the recombinant Synechocystis sp. PCC6803 were localised near the thylakoid membranes. Maximum amount of PHA accumulation was obtained in the presence of acetate, where the number of granules in the recombinant cells ranged from 4 to 6 and their sizes were in the range of 70-240 nm. In comparison to wild-type Synechocystis sp. PCC6803, recombinant cells with increased PHA synthase activity showed only a marginal increase in PHA content suggesting that PHA synthase is not the rate limiting enzyme of PHA biosynthesis in Synechocystis sp. PCC6803.  相似文献   

9.
10.
Purified recombinant poly(hydroxyalkanoic acid) (PHA) synthase from Chromatium vinosum (PhaECCv) was used to examine in vitro the specific synthase activity, turnover of R-(−)-3-hydroxybutyryl coenzyme A (3HB-CoA) and poly(3-hydroxybutyric acid) formation under various conditions. The 3HB-CoA consumption was terminated by a reaction-dependent inactivation of the PHA synthase. Salts (MgCl2, CaCl2, NaCl), proteins (bovine serum albumin, lysozyme, phasine) or detergent (Tween 20) increased the 3HB-CoA turnover to 2.5-fold. Specific PHA synthase activity was only partially affected by the added components. In general, a higher concentration of salt often inhibited the activity of PhaECCv without affecting the yield according to 3HB-CoA turnover. NAD+ and NADP+ (2 mM) inhibited PhaECCv completely, where-as NADH and NADPH did not. Macroscopic poly(3HB) granules were formed in vitro if PhaECCv was incubated in the presence of sufficient amounts of 3HB-CoA and if MgCl2 was present. The form and size of the granules synthesized in vitro were affected by the concentration of the PHA synthase protein as well as by bovine serum albumin and the GA24 protein, a poly(3HB)-granule-associated protein of Alcaligenes eutrophus. Scanning electron micrographs from the synthesized granules were obtained. The granules consisted of poly(3HB) that had a molar mass in the range (1–2) × 106 g/mol. Received: 12 September 1997 / Received revision: 24 October 1997 / Accepted: 31 October 1997  相似文献   

11.
Abstract The polyhydroxyalkanoic acid (PHA) synthase gene ( phaCAc ) of a species of Acinetobacter isolated from an activated sludge treatment plant was cloned by heterologous complementation in a poly-β-hydroxybutyrate (PHB) negative mutant of Alcaligenes eutrophus . Nucleotide sequence analysis of phaCAc revelaed an open reading frame of 1770 bp with potential to encode a 67.7 kDa protein. The deduced amino acid sequence displays high similarity to other PHA synthase proteins. Probing with an internal region of phaCAc revealed that the PHA sythase gene may be present in more than one copy and may occur at both plasmid and chromosomal locations in Acinetobacter spp. This is the first organisms for which evidence has been presented to suggest that a gene involved in PHA metabolism is plasmid-encoded. Purification of PHB granules from sucrose gradients identified proteins of 38 kDa, 41 kDa and 64 kDa which may have a role in PHB metabolism.  相似文献   

12.
13.
Computer simulation of polyhydroxyalkanoate (PHA) granule formation in vivo could help to design strategies to optimize the fermentation process and achieve higher yields of PHA. It could also suggest biotechnological approaches to control the granule size and molecular weight of the polymer. A computer program simulating the formation of PHA granules inside a Ralstonia eutropha cell was developed, based on published experimental data. The results are applicable to R. eutropha cells or other microorganisms and transgenic plants, where polyhydroxybutyrate production is made possible by heterologous expression systems. The simulation starts at the outset of the PHA accumulation phase when the cells are small and contain no PHA granules. In the presence of abundant glucose, the cell responds to phosphorus limitation by producing 3-hydroxybutyryl-CoA which undergoes polymerization on the few PHA synthase molecules present in the cytoplasm. The amphiphilic PHA synthase–PHA complex attracts additional PHA synthase molecules and granules begin to grow from these initiation sites. Phosphorus limitation and the appearance of PHA in the cytoplasm also stimulate production of phasin molecules that attach themselves to the growing granules. As the granules grow bigger, they begin to touch each other and move to optimize their packing. The phasin coat prevents the granules from coalescing. The size of the cell increases and its prolate ellipsoid shape becomes closer to spherical. The accumulation process stops either when the supply of glucose is exhausted or when the granules become tightly packed within the cell, so that access to their surface is limited. All important variables, such as cell dimensions, granule size, counts of granule-associated molecules, PHA yield, degree of polymerization of the PHA molecules, etc., are recorded in real time during the simulation. Examples of virtual experiments with the cell and their results are shown.  相似文献   

14.
In the present study, we constructed plasmid pUC-ZZ-EGFP to express Pro-ZZ-EGFP using ZZ peptide (a synthetic artificial IgG-Fc-fragment-binding protein derived from the B domain of staphylococcal protein A) and enhanced green fluorescent protein (EGFP). Without induction with isopropyl-β-d-thiogalactopyranoside, the chimeric protein was effectively expressed in Escherichia coli HB101. Its affinity constant binding IgG was 2.6 × 108 M−1 obtained by competitive enzyme-linked immunosorbent assay, indicating that the ZZ peptide retains the native structure in Pro-ZZ-EGFP. The application of immunofluorescence assay for detecting the Mycoplasma pneumoniae IgG antibody, Pro-ZZ-EGFP, exhibited a good signal comparable in brightness and fluorescence pattern with the signal generated using the fluorescein isothiocyanate-labeled anti-human IgG. The result indicates that Pro-ZZ-EGFP possesses great potential for clinical immunofluorescence IgG test as an alternative versatile fluorescent antibody.  相似文献   

15.
16.
A functional fusion protein, which consists of an antibody and an enzyme that can be used in enzyme immunoassays, has been constructed. However, a quantitative comparison of the characteristics of fusion proteins and chemical conjugates of the parents, which are functionally produced in a uniform microbial system, has not been adequately achieved. In this study, a fusion protein between the ZZ protein and Escherichia coli alkaline phosphatase (AP) and the parental ZZ protein and AP for chemical conjugate was functionally produced in the same bacterial system. A detailed examination of the ZZ–AP fusion protein and the effect of the ZZ–AP chemical conjugate on IgG affinity and enzymatic activity were performed. Compared with the parents, the equilibrium dissociation constant of ZZ–AP conjugate decreased by 32 % and catalytic activity decreased by 24 %, whereas the ZZ–AP fusion retained full parental activities and exhibited an approximately tenfold higher sensitivity than that of ZZ–AP conjugate in enzyme-linked immunosorbent assay. Thus, ZZ–AP fusion is a promising immunoreagent for IgG detection and a potential biolinker between antibodies and reporter enzymes (i.e., IgG–ZZ–AP fusion complex) in immunoassays.  相似文献   

17.
Here, the class I polyhydroxyalkanoate synthase (PhaC) from Ralstonia eutropha was investigated regarding the functionality of its conserved C-terminal region and its ability to tolerate translational fusions to its C terminus. MalE, the maltose binding protein, and green fluorescent protein (GFP) were considered reporter proteins to be translationally fused to the C terminus. Interestingly, PhaC remained active only when a linker was inserted between PhaC and MalE, whereas MalE was not functional. However, the extension of the PhaC N terminus by 458 amino acid residues was required to achieve a functionality of MalE. These data suggested a positive interaction of the extended N terminus with the C terminus. To assess whether a linker and/or N-terminal extension is generally required for a functional C-terminal fusion, GFP was fused to the C terminus of PhaC. Both fusion partners were active without the requirement of a linker and/or N-terminal extension. A further reporter protein, the immunoglobulin G binding ZZ domain of protein A, was translationally fused to the N terminus of the fusion protein PhaC-GFP and resulted in a tripartite fusion protein mediating the production of polyester granules displaying two functional protein domains.Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by many bacteria and some archaea in times of unbalanced nutrient availability (7, 14-16, 22). These polyesters are stored as water-insoluble inclusions inside the cells and serve as energy and carbon storage (11, 29, 30). PHA synthases catalyze the stereoselective conversion of (R)-3-hydroxyacyl-coenzyme A (CoA) to PHAs while CoA is released and intracellular PHA granules are formed (32). The PHA synthase remains covalently attached to the PHA granule surface and has been targeted by protein engineering, i.e., translational fusion to the dispensable and variable N terminus, to enable the display of various protein functions without affecting the synthase activity (8, 26). PHA granules displaying certain functionalities have been considered as biobeads for biotechnological and medical applications (11).PHA synthases can be divided into four classes. Class I and class II enzymes consist of only one subunit (PhaC) (28) and produce short-chain-length PHAs (class I) or medium-chain-length PHAs (class II), respectively (30, 33). Polyester synthases belonging to class III consist of two subunits, PhaC and PhaE, and produce short-chain-length PHAs (20, 21). Class IV PHA synthases are similar to enzymes belonging to class III. The synthases of this class comprise the two subunits PhaC and PhaR (23, 24).It was previously shown that the N terminus of PhaC is a highly variable region and not essential for PHA synthase activity (30, 35). In contrast, the C terminus is a rather conserved region among class I and class II PHA synthases and is essential for enzyme activity (31). Alignments of the amino acid sequences of different PHA synthases revealed that the C terminus of these enzymes is hydrophobic and was therefore suggested to interact with the hydrophobic core of PHA granules (30). The PhaC subunits of class III and class IV PHA synthases do not show a high hydrophobicity for their C- terminal regions. Previous studies showed that the PhaC subunit of the class IV PHA synthase from Bacillus megaterium tolerates fusions to its C terminus without a loss in activity as long as the hydrophobic second subunit, PhaR, is present as well (23).The aim of this study was to assess the effect of the conserved hydrophobic C terminus of PhaC on enzyme activity with regard to the possibility of translationally fusing protein functions for display at the PHA granule surface. This will be of interest for the display of proteins that require their free C terminus for activity.  相似文献   

18.
【目的】研究地中海富盐菌PHA合酶(Pha EC)中Pha E亚基乙酰化修饰对其功能的影响,探讨乙酰化修饰对菌体生理代谢的调控作用。【方法】蔗糖密度梯度离心收集PHA颗粒,质谱鉴定颗粒结合蛋白Pha E的乙酰化位点。将乙酰化位点(赖氨酸,K)分别突变为精氨酸(R)(模拟去乙酰化)或谷氨酰胺(Q)(模拟乙酰化),利用同源双交换原理,将突变后的基因原位敲入基因组。以野生型为对照,检测突变对菌体生长、葡萄糖消耗和PHA合成能力的影响。利用Western blot检测PHA颗粒上Pha E的含量,进一步分析乙酰化修饰对蛋白功能的影响。【结果】在Pha E蛋白105位和170位赖氨酸(K)2个位点检测到乙酰化修饰。利用遗传操作系统将突变的基因原位敲入,共得到6种突变株。发酵结果表明,任何一种单突变对菌体生长及PHA合成的影响均不明显。但当2个位点同时突变成精氨酸(K105R/K170R)时,突变株生长及合成PHA的能力均受到明显抑制,2个位点同时突变成谷氨酰胺(K105Q/K170Q)则无明显影响。进一步的Western blot结果表明,突变成精氨酸的双突变株的PHA颗粒上,Pha E蛋白的含量相较于野生型约降低了一半。【结论】Pha E蛋白的去乙酰化能够导致菌株利用葡萄糖合成PHA的能力显著降低,其可能原因是降低了Pha E与PHA颗粒或PHA颗粒上Pha C的结合能力,从而降低了Pha EC合酶的活性。  相似文献   

19.
Ruth K  de Roo G  Egli T  Ren Q 《Biomacromolecules》2008,9(6):1652-1659
Pseudomonas putida GPo1 is able to accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules as storage materials. PHA granules were isolated and analyzed for protein activities. An acyl-CoA-synthetase (ACS1) activity was detected from the purified PHA granules. The corresponding gene acs1 was then cloned from P. putida GPo1. With the genomic walking technique, a homologue acs2 located upstream of acs1 was discovered and cloned. Fusions of both acs1 and acs2 with the gene encoding the green fluorescent protein (GFP) were constructed and expressed in GPo1. In vivo fluorescence microscopy studies showed that the fluorescence generated from the ACS1-GFP was mainly associated with the PHA granules, whereas that from ACS2-GFP was mainly with the membrane of the cells. In the control strain (containing GFP alone) fluorescence was distributed evenly in the cytoplasm. We concluded that ACS1 is located on the PHA granules and may play a central role in mobilization of PHA, for example, conversion of hydroxycarboxylic acid monomers to hydroxycarboxyl-CoA, which can be further utilized by the cells.  相似文献   

20.
Expression plasmids have been constructed for evaluation of different signal sequences for secretion and correct amino terminal processing of foreign proteins expressed in Escherichia coli. cDNA representing the N-terminal region (1-37) of human parathyroid hormone was inserted between DNA coding for two different forms of the signal sequence and two IgG binding domains (ZZ) derived from Staphylococcal protein A. The expression products were secreted to the periplasm and even to the growth medium and were easily purified by affinity chromatography using the ZZ part as a specific handle. Further analyses showed that the expression products were correctly processed to the mature protein hPTH(1-37)ZZ in a construct where the wild type signal sequence of Staphylococcus protein A was used. When a mutated signal sequence which lacks the normal cleavage site was employed, the fusion protein was not cleaved. Since signal sequences seem to be processed in the correct way in this system, we conclude that the general design of this type of expression vector is well suited for studying the N-terminal processing and secretion of heterologous proteins in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号