首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of differentiation stages in a murine epidermal cell transformation model has been investigated as a basis for studies of chemically-induced differentiation. Antibodies in sera of patients with the autoimmune diseases bullous pemphigoid and pemphigus vulgaris exhibit specific reactivity to antigenic determinants of basal and spinous cells, respectively, in sections of mouse and human epidermis. In addition, spinous cells in epidermis are reactive with a mouse monoclonal antibody to desmoplakin, a desmosomal component immunologically distinct from pemphigus. These antibodies were used to identify and attempt to quantify keratinocyte subpopulations in culture based on differentiation stage. Epidermal cell lines were cultured under conditions which favour proliferation (0.02 to 0.04 mM extracellular Ca2+, i.e. low Ca2+ conditions) or differentiation (0.1 mM to 1.4 mM Ca2+), as previously shown using primary cultures of mouse keratinocytes. Two independently-derived normal keratinocyte lines demonstrated Ca2(+)-dependent reactivity with pemphigoid and pemphigus antiserum, like that which has been observed in primary cultures. Furthermore, a Ca2+ and time-dependent reactivity with the three antisera was also observed in a papilloma cell line (derived from one of the normal cell lines after treatment in vitro with 7,12-dimethylbenz[alpha]anthracene). Papilloma cells cultured under conditions of low extracellular Ca2+ were comprised of three subpopulations: cells reactive only with pemphigoid anti-serum, cells reactive only with desmoplakin antibody. However, like the normal cell lines, papilloma cells underwent a transition to predominantly a spinous cell population (i.e. reactive with pemphigus and desmoplakin antibody) in response to extracellular Ca2+. A slower loss of pemphigoid antibody reactivity was noted in papilloma cells, consistent with an abnormal regulation of differentiation. The attempt to characterize these dynamic transitions from basal to spinous cell subpopulations in culture was considered to be prerequisite for the use of the model to investigate differentiation-inducing agents in carcinoma therapy.  相似文献   

2.
In most autoimmune diseases, the autoantibody response is directed against several antigens of the target organ whose identification is crucial for understanding the physiopathological process. Thus, technologies allowing a characterization of the whole autoantibody pattern of both human and experimental autoimmune diseases are required. Here we have used immunoproteomic analysis of human epidermal extracts to characterize the diversity of the anti-desmosome antibody response induced in normal mice immunized with desmoglein 1, the major autoantigen of pemphigus foliaceus, an autoimmune blistering skin disease. In particular, this analysis enables us to characterize the binding properties of anti-desmosome mAbs derived from these mice and to show that the autoantibody response induced upon immunization with a single autoantigen targets different epidermal autoantigens with a pattern similar to that observed in certain variety of human pemphigus.  相似文献   

3.
Pemphigus is an autoimmune blistering disease of the skin and mucous membranes. It is caused by autoantibodies directed against desmosomes, which are the principal adhesion structures between epidermal keratinocytes. Binding of autoantibodies leads to the destruction of desmosomes resulting in the loss of cell-cell adhesion (acantholysis) and epidermal blisters. The plasminogen activator system has been implicated as a proteolytic effector in pemphigus. We have tested inhibitors of the plasminogen activator system with regard to their potential to prevent pemphigus-induced cutaneous pathology. In a human split skin culture system, IgG preparations of sera from pemphigus vulgaris patients caused histopathologic changes (acantholysis) similar to those observed in the original pemphigus disease. All inhibitors that were tested (active site inhibitors directed against uPA, tPA, and/or plasmin; antibodies neutralizing the enzymatic activity of uPA or tPA; substances interfering with the binding of uPA to its specific cell surface receptor uPAR) failed to prevent pemphigus vulgaris IgG-mediated acantholysis. Plasminogen-mediated acantholysis, however, was effectively antagonized by the synthetic active site serine protease inhibitor WX-UK1 or by p-aminomethylbenzoic acid. Our data argue against applying anti-plasminogen activator/anti-plasmin strategies in the management of pemphigus.  相似文献   

4.
Abstract

Desmosomes are the most important intercellular adhering junctions that adhere two adjacent keratinocytes directly with desmosomal cadherins, that is, desmogleins (Dsgs) and desmocollins, forming an epidermal sheet. Recently, two cell–cell adhesion states of desmosomes, that is, “stable hyper-adhesion” and “dynamic weak-adhesion” conditions have been recognized. They are mutually reversible through cell signaling events involving protein kinase C (PKC), Src and epidermal growth factor receptor (EGFR) during Ca2+-switching and wound healing. This remodeling is impaired in pemphigus vulgaris (PV, an autoimmune blistering disease), caused by anti-Dsg3 antibodies. The antibody binding to Dsg3 activates PKC, Src and EGFR, linked to generation of dynamic weak-adhesion desmosomes, followed by p38MAPK-mediated endocytosis of Dsg3, resulting in the specific depletion of Dsg3 from desmosomes and acantholysis. A variety of pemphigus outside-in signaling may explain different clinical (non-inflammatory, inflammatory, and necrolytic) types of pemphigus. Pemphigus could be referred to a “desmosome-remodeling disease involving pemphigus IgG-activated outside-in signaling events”.  相似文献   

5.
Abstract The expression of differentiation stages in a murine epidermal cell transformation model has been investigated as a basis for studies of chemically-induced differentiation. Antibodies in sera of patients with the autoimmune diseases bullous pemphigoid and pemphigus vulgaris exhibit specific reactivity to antigenic determinants of basal and spinous cells, respectively, in sections of mouse and human epidermis. In addition, spinous cells in epidermis are reactive with a mouse monoclonal antibody to desmoplakin, a desmosomal component immunologically distinct from pemphigus. These antibodies were used to identify and attempt to quantify keratinocyte subpopulations in culture based on differentiation stage. Epidermal cell lines were cultured under conditions which favour proliferation (0.02 to 0.04 mm extracellular Ca2+, i.e. low Ca2+ conditions) or differentiation (0.1 mM to 1.4 mM Ca2+), as previously shown using primary cultures of mouse keratinocytes. Two independently-derived normal keratinocyte lines demonstrated Ca2+-dependent reactivity with pemphigoid and pemphigus antiserum, like that which has been observed in primary cultures. Furthermore, a Ca2+ and time-dependent reactivity with the three antisera was also observed in a papilloma cell line (derived from one of the normal cell lines after treatment in vitro with 7,12-dimethylbenz[α]anthracene). Papilloma cells cultured under conditions of low extracellular Ca2+ were comprised of three subpopulations: cells reactive only with pemphigoid anti-serum, cells reactive with pemphigoid and desmoplakin antibody (intracellular location), and cells reactive only with desmoplakin antibody. However, like the normal cell lines, papilloma cells underwent a transition to predominantly a spinous cell population (i.e. reactive with pemphigus and desmoplakin antibody) in response to extracellular Ca2+. A slower loss of pemphigoid antibody reactivity was noted in papilloma cells, consistent with an abnormal regulation of differentiation. The attempt to characterize these dynamic transitions from basal to spinous cell subpopulations in culture was considered to be prerequisite for the use of the model to investigate differentiation-inducing agents in carcinoma therapy.  相似文献   

6.
Pemphigus is an autoimmune disease in which IgG auto-antibodies (auto-ab) against the desmosomal cadherins desmoglein (Dsg) 3 and Dsg1 cause loss of epidermal keratinocyte adhesion. Aim of this study was to investigate cytokines derived from antigen-presenting cells (APC) and their relation to CD4+ T cell subpopulations and to the auto-ab response in pemphigus. In this regard, patients with pemphigus were compared to patients with myasthenia gravis (MG), an unrelated auto-ab–mediated autoimmune disease, and healthy controls. In pemphigus and MG, the plasma concentrations of the APC-derived immunomodulatory cytokine IL-27 were highly increased. Strikingly, IL-27 strongly correlated with Dsg-specific IgG auto-ab titers. T helper (Th) 17 cells were augmented in both pemphigus and MG patients while T follicular helper (Tfh) cells, which are essential in providing B cell help, were increased only in pemphigus along with increasing plasma concentrations of IL-21, a cytokine produced by Th17 and Tfh cells. Moreover, we could detect Dsg3-specific autoreactive T cells producing IL-21 upon ex vivo stimulation with Dsg3. These findings suggest that IL-27 and IL-21-producing T cells, are involved in the pathogenesis of pemphigus. The further characterization of IL-21-producing T cells and of the role of IL-27 will lead to a more defined understanding of the auto-ab response in pemphigus.  相似文献   

7.
Pemphigus is an autoimmune disorder resulting from the interaction between autoantibodies and desmoglein. Oxidative stress seems to be responsible for the onset/aggravation of many human diseases. Actually, it is considered as one of the several factors for the etiopathogenesis of pemphigus. The present study aims to evaluate the oxidative state in the sera of pemphigus vulgaris and pemphigus foliaceus patients by assessing lipid peroxidation, proteins oxidation, and antioxidant enzyme activity. This study included 36 pemphigus vulgaris and 42 pemphigus foliaceus patients as well as a group of controls consisting of 78 healthy volunteers. Malondialdehyde levels (p?<?0.001) and catalase activity (p?<?0.001) are higher in both groups of patients than in the control group. The two groups of patients showed a nonsignificant decrease in the thiol groups compared with the healthy one. A nonsignificant difference was shown between pemphigus vulgaris and pemphigus foliaceus patients, except for the catalase which shows an increase in the pemphigus vulgaris group. We have also found significant correlations between serum oxidative stress marker levels and serum anti-desmoglein antibody levels in the two pemphigus groups. These findings underline the implication of oxidative stress in the physiopathology of pemphigus by the increase in the autoantibodies?? reactivity.  相似文献   

8.
The autoimmune blistering skin diseases pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are mainly caused by autoantibodies against desmosomal cadherins. In this study, we provide evidence that PV-immunoglobulin G (IgG) and PF-IgG induce skin blistering by interference with Rho A signaling. In vitro, pemphigus IgG caused typical hallmarks of pemphigus pathogenesis such as epidermal blistering in human skin, cell dissociation, and loss of desmoglein 1 (Dsg 1)-mediated binding probed by laser tweezers. These changes were accompanied by interference with Rho A activation and reduction of Rho A activity. Pemphigus IgG-triggered keratinocyte dissociation and Rho A inactivation were p38 mitogen-activated protein kinase dependent. Specific activation of Rho A by cytotoxic necrotizing factor-y abolished all pemphigus-triggered effects, including keratin retraction and release of Dsg 3 from the cytoskeleton. These data demonstrate that Rho A is involved in the regulation of desmosomal adhesion, at least in part by maintaining the cytoskeletal anchorage of desmosomal proteins. This may open the possibility of pemphigus treatment with the epidermal application of Rho A agonists.  相似文献   

9.
H Yasuno  K Yamanishi 《Human cell》1988,1(2):162-170
The usual methods of skin culture composed of organ culture, explant culture and cell culture were described. In organ culture of normal human skin, some blister diseases models have been used for the study of the mechanisms for producing the skin damage in pemphigus, bullous pemphigoid and epidermolysis bullosa hereditaria. Recent advances in epidermal cell culture system have furnished a potent tool for the study of keratinization at the molecular level. In the present status on tissue culture of human skin, these applications to clinical and laboratory investigations were discussed.  相似文献   

10.
In normal human epidermal keratinocytes (NHEK) proteolytic detachment from the substrate induces a complex activation cascade including expression of new proteins, morphological alterations, and the onset of migration for epidermal regeneration. By subtractive cloning we have shown that L6, a four-transmembrane protein, is newly expressed after proteolytic keratinocyte detachment. In this study, we have generated a novel anti-L6 antibody (clone HD-pKe#104-1.1) and investigated L6 expression regulation in vitro and in vivo as well as L6 function in keratinocyte migration. Dispase-mediated detachment induced L6 expression in NHEK at the mRNA and protein level. Immunohistology of skin biopsies displayed a strong expression of L6 in follicular epidermis and epidermolytic lesions of autoimmune bullous dermatoses (bullous pemphigoid, pemphigus vulgaris), but not in normal interfollicular epidermis. In contrast to normal keratinocytes, HaCaT cells showed constitutive L6 expression, indicating a constitutively active phenotype. After artificial wounding of confluent HaCaT cultures, anti-L6 antibody strongly impaired cell migration velocity and migratory reepithelization of the defect, indicating L6 involvement in keratinocyte migration. These findings suggest that L6 is an important activation-dependent regulator of keratinocyte function and epidermal tissue regeneration.  相似文献   

11.
By means of light microscopy 145 biopsies of skin in acantholytic pemphigus were studied. Electron microscopic and radioautographic study was carried out in 19 cases. It was determined that the whole complex of ultrastructural changes in epidermocytes (impairment of nucleolar apparatus, lysis of cytoplasmic organelles, disappearance of desmosomes) reflects the disturbance of protein synthesis. Radioautographic study in vitro with 3H-uridine and 3H-thymidine revealed the low level of RNA and DNA synthesis in epidermal cells in pemphigus. The data obtained were interpreted with a position from the conception of plastic deficiency.  相似文献   

12.
Through a still unclear mechanism, pemphigus vulgaris autoantibodies (PV-IgG) induce intra-epidermal acantholytic lesions responsible for severe to fatal skin wounding. We present evidence that PV lesions contain apoptotic keratinocytes, and that cell death is induced in the lesional tissue apparently before cell separation. These data suggest that apoptosis could be the cause of the acantholytic phenomenon. We show that PV-IgG and an antibody against Fas receptor (anti-FasR) induce lesions in vitro in a similar way, causing: (1) secretion of soluble FasL; (2) elevated cellular amounts of FasR, FasL (soluble and membranal), Bax and p53 proteins; (3) reduction in levels of cellular Bcl-2; (4) enrichment in caspase 8, and activation of caspases 1 and 3; (5) co-aggregation of FasL and FasR with caspase 8 in membranal death-inducing signaling complex (DISC). Hence, the Fas-mediated death signaling pathway seems to be involved in lesion formation. Moreover, we have shown that in skin organ cultures and in keratinocyte cultures, PV-IgG can induce caspase activation and DNA fragmentation, and caspase inhibitors can prevent the formation of PV-IgG-induced epidermal lesions. Altogether, these results suggest that PV-IgG-induced acantholysis may proceed through the death-signaling pathway. They highlight new perspectives on mechanisms of tissue damage in autoimmune diseases.  相似文献   

13.
A study was undertaken to verify the reliability of the Tzanck test, performed both by traditional cytomorphology and by a direct immunofluorescence technique, for the diagnosis of oral pemphigus vulgaris. Cytologic smears were obtained from oral erosions of 129 patients with various bullous diseases of the oral mucosa, clinically suspected of being oral pemphigus, as well as from 30 healthy subjects. The 40 cases with subsequent histologic proof of oral pemphigus were cytologically diagnosed as such, based on the significant cytomorphologic findings of acantholytic cells or on the pericellular deposition of IgG (which persisted after cytocentrifugation) in epithelial cells, as studied by direct immunofluorescence. Cytomorphology gave positive results in 37 patients with pemphigus and in one patient with a final diagnosis of herpetic stomatitis and gave negative results in all other cases. Immunocytology gave positive results in all patients with pemphigus and negative results in all other cases. The findings indicate that cytomorphologic studies may be useful in screening suspected cases of oral pemphigus vulgaris while the immunocytologic test may provide a reliable definitive diagnosis.  相似文献   

14.
15.
Pemphigus vulgaris (PV) is an autoimmune skin disease mediated by autoantibodies directed against the cadherin-type cell adhesion molecules desmoglein (Dsg) 3 and Dsg1 and is characterized by loss of keratinocyte cohesion and epidermal blistering. Several intracellular signaling pathways, such as p38MAPK activation and RhoA inhibition, have been demonstrated to be altered following autoantibody binding and to be causally involved in loss of keratinocyte cohesion. In this paper, we demonstrate that cAMP-mediated signaling completely prevented blister formation in a neonatal pemphigus mouse model. Furthermore, elevation of cellular cAMP levels by forskolin/rolipram or β receptor agonist isoproterenol blocked loss of intercellular adhesion, depletion of cellular Dsg3, and morphologic changes induced by Ab fractions of PV patients (PV-IgG) in cultured keratinocytes. Incubation with PV-IgG alone increased cAMP levels, indicating that cAMP elevation may be a cellular response pathway to strengthen intercellular adhesion. Our data furthermore demonstrate that this protective pathway may involve protein kinase A signaling because protein kinase A inhibition attenuated recovery from PV-IgG-induced cell dissociation. Finally, cAMP increase interfered with PV-IgG-induced signaling by preventing p38MAPK activation both in vitro and in vivo. Taken together, our data provide insights into the cellular response mechanisms following pemphigus autoantibody binding and point to a possible novel and more specific therapeutic approach in pemphigus.  相似文献   

16.
Many children suffer from the bacterial skin diseases bullous impetigo and staphylococcal scalded skin syndrome (SSSS). Staphylococcus aureus, which produces exfoliative toxins (ETs), causes these diseases. Recently, it was proven that ETs cleave the cell adhesion molecule desmoglein (Dsg) 1, which plays an important role in maintaining the proper structure and barrier function of the epidermis. Surprisingly, Dsg1 is also the antibody target in the autoimmune disease pemphigus foliaceus. Skin biopsies from pemphigus foliaceus patients show the same pathology as those from bullous impetigo and SSSS patients. The crystal structure of ET suggests that it is a serine protease with an inactive catalytic site, which may become activated when ET binds a specific receptor. This receptor binding is thought to cause a change in conformation that exposes the catalytic site. It has recently been shown that Dsg1 specifically binds and activates ET, which in turn cleaves the bound Dsg1 at only one peptide bond. This process is absolutely dependent on the calcium-dependent conformation of Dsg1. These data suggest that ETs have a very high specificity for human Dsg1, and that S. aureus uses ETs to disrupt the barrier of the human epidermis in order to survive and proliferate on the human body.  相似文献   

17.
The antioxidant effect of selenium-containing single-chain Fv catalytic antibody (Se-scFv2F3), a new mimic of glutathione peroxidase, was confirmed using a model system in which cultured rat skin epidermal cells were injured by ultraviolet B (UVB). The cell damage was characterized in terms of lipid peroxidation of the cells, cell viability, and cell membrane integrity. The injury effects of UVB and protection effects of Se-scFv2F3 on the cells were studied using the model system. UVB can damage the cells severely. Upon precultivation of the cells with 0.4U/ml Se-scFv2F3, however, the damage was significantly reduced as shown by the increase in cell viability, the decrease in the malondialdehyde and hydrogen peroxide levels, and the normalization of lactate dehydrogenase activity. In addition, a novel finding that Se-scFv2F3 can stimulate cultured epidermal cells to proliferate under certain conditions was observed.  相似文献   

18.
The pathophysiology of immunoglobulin G4-related disease (IgG4-RD) and its most common manifestations, IgG4-associated (sclerosing) cholangitis and autoimmune pancreatitis, remains largely unknown, but IgG4 is presumably involved. IgG4 is a promiscuous antibody, which could be directly pathogenic, fulfill a protective role, or could just be a fortuitous marker of an aberrant inflammatory response. IgG4 antibodies possess exclusive structural and functional characteristics suggesting anti-inflammatory and tolerance-inducing effects. By studying the role of IgG4 in other inflammatory conditions, namely hypersensitivity and allergies, autoimmune and immune-mediated diseases, infections and malignancies, new insights can be obtained increasing our understanding of the role of IgG4 antibodies in IgG4-RD. Beekeepers, animal laboratory workers and individuals undergoing allergen immunotherapy possess high serum levels of allergen-specific IgG4, which exhibit immunosuppressive functions, protecting the individual from anaphylactic reactions. In autoimmune/immune-mediated diseases, such as pemphigus vulgaris, pemphigus foliaceus and MuSK-myasthenia gravis, IgG4 autoantibodies are pathogenic. Regarding malignancies such as melanoma and cholangiocarcinoma or helminthic infections, IgG4 antibodies inhibit clearance of tumor cells or the invader, respectively. Translating these findings to IgG4-RD, IgG4 alone can implement pathogenic effects and structural damage, but may also function as a protective antibody dampening the more harmful effects of IgG1 when directed against the same epitopes. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

19.
The appearance and development of the embryonic and larval eyes of the polyclad turbellarian Stylochus mediterraneus were studied. In the embryo, the left epidermal eye appears first. Subsequently, the right epidermal eye appears, and within hours it sinks into the parenchyma and turns into a cerebral eye. Newly hatched Götte's larvae possess both the left epidermal and the right cerebral eye. Three days after hatching, an incomplete eye appears adjacent to the left epidermal eye. The left cerebral eye then originates from this incomplete eye as it sinks into the parenchyma. This third eye is believed to originate through a process of induction.  相似文献   

20.
Recent studies have demonstrated that antibodies from about half of patients with pemphigus foliaceus (PF) bind to a 160 kd polypeptide ("PF antigen") in sodium dodecyl sulfate (SDS) extracts of normal human epidermis. Desmoglein (DG) I, a glycoprotein enriched in desmosomal cores, is approximately the same m.w. as PF antigen. To demonstrate that PF autoantibodies bind to DG I, we used a monoclonal IgG antibody (MmDGI-1) that was raised against bovine muzzle desmosomal cores, and that specifically binds DG I. Double immunofluorescence labeling was performed on the same section of normal human skin with PF antibodies, detected by fluorescein-conjugated goat anti-human IgG, and MmDGI-1, detected by rhodamine-conjugated goat anti-mouse IgG. The pattern of reactivity with both antibodies was identical. Immunoblotting studies on proteins extracted from normal human epidermis and separated by SDS-polyacrylamide gel electrophoresis demonstrated that PF antibodies and MmDGI-1 bound co-migrating polypeptide bands of approximate m.w. 160,000. To confirm that these were identical polypeptides, we performed immunoblots of these epidermal extracts that were separated by two-dimensional gel electrophoreses (isoelectric focusing followed by SDS-PAGE). PF antibodies and MmDGI-1 bound identical spots with pI approximately 5.4 to 5.7 and m.w. approximately 160,000. These studies demonstrate that autoantibodies from certain patients with PF, a disorder of cell adhesion, bind to DG I, a desmosomal core glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号