首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21(WAF1/Cip1) (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form. In contrast, p53 could not transactivate the p21 promoter in the Drosophila embryo-derived Schneider's SL2 cells that lack endogenous Sp1 or related factors. Cotransfection of SL2 cells with p53 and Sp1 resulted in a synergistic transactivation of the p21 promoter. Synergistic transactivation was greatly decreased in SL2 cells and HaCaT cells by mutations in either the p53-binding site or in the -82/-77 Sp1-binding site indicating functional cooperation between Sp1 and p53 in the transactivation of the p21 promoter. Synergistic transactivation was also decreased by mutations in the transactivation domain of p53. Physical interactions between Sp1 and p53 proteins were established by glutathione S-transferase pull-down and coimmunoprecipitation assays. By using deletion mutants we found that the DNA binding domain of Sp1 is required for its physical interaction with p53. In conclusion, Sp1 must play a critical role in regulating important biological processes controlled by p53 via p21 gene activation such as DNA repair, cell growth, differentiation, and apoptosis.  相似文献   

8.
9.
10.
11.
12.
The liver is exposed to a wide variety of toxic agents, many of which damage DNA and result in increased levels of the tumour suppressor protein p53. We have previously shown that p53 inhibits the transactivation function of HNF (hepatocyte nuclear factor) 4alpha1, a nuclear receptor known to be critical for early development and liver differentiation. In the present study we demonstrate that p53 also down-regulates expression of the human HNF4alpha gene via the proximal P1 promoter. Overexpression of wild-type p53 down-regulated endogenous levels of both HNF4alpha protein and mRNA in Hep3B cells. This decrease was also observed when HepG2 cells were exposed to UV irradiation or doxorubicin, both of which increased endogenous p53 protein levels. Ectopically expressed p53, but not a mutant p53 defective in DNA binding (R249S), down-regulated HNF4alpha P1 promoter activity. Chromatin immunoprecipitation also showed that endogenous p53 bound the HNF4alpha P1 promoter in vivo after doxorubicin treatment. The mechanism by which p53 down-regulates the P1 promoter appears to be multifaceted. The down-regulation was partially recovered by inhibition of HDAC activity and appears to involve the positive regulator HNF6alpha. p53 bound HNF6alpha in vivo and in vitro and prevented HNF6alpha from binding DNA in vitro. p53 also repressed stimulation of the P1 promoter by HNF6alpha in vivo. However, since the R249S p53 mutant also bound HNF6alpha, binding HNF6alpha is apparently not sufficient for the repression. Implications of the p53-mediated repression of HNF4alpha expression in response to cellular stress are discussed.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Highlights? Binding of p53 to its cognate DNA is facilitated by HMGB1 ? The N-terminal region of p53 (residues 38–61; TAD2) interacts with the HMG boxes ? The acidic tail of HMGB1 masks the p53 binding site in the free proteins ? The structure of the A-box/p53(1–93) complex shows that TAD2 acts as an ss-DNA mimic  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号