首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfer of phospholipid from the envelope of hemagglutinating virus of Japan (HVJ) to erythrocyte (RBC) membrane and the virus-induced transfer of phospholipid between RBC membranes were studied using spin-labeled phosphatidylcholine (PC). The transfer of PC from membranes labeled densely with PC to unlabeled membranes was followed by the peak height increase in the electron spin resonance spectrum. The two kinds of transfer reactions took place very rapidly as reported previously. To obtain further details, the transfer reactions were studied with HVJ, HVJ inactivated by trypsin, HVJ harvested early, HVJ grown in fibroblast cells, the fibroblast HVJ activated by trypsin, influenza virus, and glutaraldehyde-treated RBCs. The results demonstrated that the viral F glycoprotein played a crucial role in the transmembrane phospholipid movements as well as in the fusion and hemolysis of RBCs. The transfer from HVJ to RBC's occurred partially through an exchange mechanism not accompanying the envelope fusion. This was shown by a decrease in the exchange broadening of the electron spin resonance spectrum of released spin-labeled HVJ (HVJ) and also by an increase in the ratio of PC to viral proteins incorporated into RBC membranes. HVJ modified RBC membrane so as to be able to exchange its phospholipids with those of inactive membranes such as fibroblast HVJ, influenza virus, glutaraldehyde-treated RBC'S, and phosphatidylcholine vesicles. HVJ affected the fluidity of RBC membranes markedly, the environments around PC being much fluidized. The virus-induced fusion was discussed based on close apposition of the membranes by HANA proteins and on the destabilization and fluidization of RBC membranes by F glycoproteins.  相似文献   

2.
T Maeda  A Asano  K Oki  Y Okada  S Onishi 《Biochemistry》1975,14(17):3736-3741
Fusion of red blood cells (RBC) induced by hemagglutinating virus of Japan (HVJ) has been studied using a phosphatidylcholine spin label. The spin label was readily incorporated and diffused into the lipid bilayer portion of the viral envelope. The exchange broadening in the electron spin resonance (ESR) spectrum of densely labeled virus disappeared rapidly when the virus was mixed with RBC at 37 degrees. The spectrum gradually approached that of the host cell spin labeled with the phosphatidylcholine label. The results directly indicate transfer and intermixing of phospholipid molecules between the viral envelope and RBC membrane. The transfer reaction was strongly dependent on temperature. No transfer was observed at lower temperatures where the virus adsorbed to the cell and caused aggregation but no hemolysis and fusion. The transfer rate remained negligibly small until 19 degrees and increased rapidly between 25 and 30 degrees. The virus-induced hemolysis showed similar temperature dependence. The transfer rate was greatly reduced under inhibitory conditions of fusion: glutaraldehyde treatment of RBC, trypsin treatment of HVJ, or the presence of concanavalin A. Only slight transfer was observed from fusion-inactive influenza virus to RBC. The transfer was greatly enhanced by the help of HVJ. The close parallelism suggests that the transfer and intermixing are necessary steps to the cell fusion. The transfer rate was dependent on fluidity of the host cell membrane and independent of the viral dose. The virus-induced transfer of phospholipid molecules between RBC's was also detected by the spin label. Its temperature dependence was quite similar to that for the virus-to-cell transfer. The intercellular transfer was nearly proportional to the viral dose.  相似文献   

3.
The ESR data on the influence of membrane potential of the fusion of Sendai virus envelope with erythrocyte membrane are presented. The hyperpolarization of cell membrane takes place at low concentration of KCl (1-5 mM) in extracellular medium in the presence of valinomycin, while at high concentration of KCl (125-150 mM) its depolarization occurs. The hyperpolarization of erythrocyte plasma membrane is accompanied by the increase of its fusion with viral envelope and virus-induced hemolysis. At the same time depolarization of erythrocyte membrane leads to the decrease of virus fusion activity. This evidence together with previously obtained by patch-clamp method data on potential-dependence of virus-induced increase of cell membrane conductivity provide us an opportunity to make a proposal that the electric field membrane damage may be the initial stage of the virus-induced membrane fusion.  相似文献   

4.
A kinetic scheme is proposed for the action of cobra venom phospholipase A2 on mixed micelles of phospholipid and the nonionic detergent Triton X-100, based on the "dual phospholipid model." (formula; see text) The water-soluble enzyme binds initially to a phospholipid molecule in the micelle interface. This is followed by binding to additional phospholipid in the interface and then catalytic hydrolysis. A kinetic equation was derived for this process and tested under three experimental conditions: (i) the mole fraction of substrate held constant and the bulk substrate concentration varied; (ii) the bulk substrate concentration held constant and the Triton X-100 concentration varied (surface concentration of substrate varied); and (iii) the Triton X-100 concentration held constant and the bulk substrate concentration varied. The substrates used were chiral dithiol ester analogs of phosphatidylcholine (thio-PC) and phosphatidylethanolamine (thio-PE), and the reactions were followed by reaction of the liberated thiol with a colorimetric thiol reagent. The initial binding (Ks = k1/k-1) was apparently similar for thio-PC and thio-PE (between 0.1 and 0.2 mM) as were the apparent Michaelis constants (Km = (k-2 + k3)/k2) (about 0.1 mol fraction). The Vmax values for thio-PC and thio-PE were 440 and 89 mumol min-1 mg-1, respectively. The preference of cobra venom phospholipase A2 for PC over PE in Triton X-100 mixed micelles appears to be an effect on k3 (catalytic rate) rather than an effect on the apparent binding of phospholipid in either step of the reaction.  相似文献   

5.
The nature of the interaction between Sendai virus and Sil mutant cells was examined by measuring a change in ESR spectrum of spin-labeled phosphatidylcholine molecules on the viral envelope. When spin-labeled virus was incubated with the Sil cells that had a reduced ability to respond to virus-induced cell fusion, interchange of the phospholipid molecules between viral envelope and cell surface membrane occurred to a smaller extent than that observed with parental cells. Moreover, the degree of the interchanging correlated with the degree of the fusion capacity of the mutant lines. The results show that the mutant cells carry such a lesion(s) on their surface membranes that the viral envelopes can hardly fuse into them.  相似文献   

6.
The nature of the interaction between Sendai virus and Sil mutant cells was examined by measuring a change in ESR spectrum of spin-labeled phosphatidylcholine molecules on the viral envelope. When spin-labeled virus was incubated with the Sil cells that had a reduced ability to respond to virus-induced cell fusion, interchange of the phospholipid molecules between viral envelope and cell surface membrane occurred to a smaller extent than that observed with parental cells. Moreover, the degree of the interchanging correlated with the degree of the fusion capacity of the mutant lines. The results show that the mutant cells carry such a lesion(s) on their surface membranes that the viral envelopes can hardly fuse into them.  相似文献   

7.
Aggregation of intramembrane particles of human erythrocytes was found to be induced by HVJ (Sendai virus) under conditions which lead to cell fusion. Degree of polyerythrocyte formation was compared under a variety of conditions with extent of cluster formation observed with the same preparations. Both structural changes of the membranes, ie, fusion and clustering of the particles, behaved very similarly under widely different virus-to-cell ratios and over the time course of cell fusion. Furthermore, by inclusion of high concentrations of antispectrin antibodies within the ghosts, inhibition of clustering of intramembrane particles and hindrance of virus-induced cell fusion were found to occur simultaneously. Antibodies by themselves did not induce aggregation of particles under isotonic conditions, whereas particle clustering could be induced under hypotonic conditions at antibody concentrations causing partial cross-linking of spectrin molecules. In conclusion, clustering of intramembrane particles seems to be required for virus-induced fusion of human erythrocytes.  相似文献   

8.
Since mixtures of lipids alone are known to elicit membrane fusion without participation of fusion proteins, the role of viral lipids in the so-called virus-induced hemolysis and cell fusion has been investigated, using as a model the fowl plague virus (influenza A/FPV/Rostock/H7N1). The experiments were planned in a way that allowed quantitative modification of viral lipids without changing envelope glycoproteins. Under the conditions employed, cholesterol oxidase of Nocardia erythropolis and phospholipase C of Bacillus cereus were shown to completely modify their substrates in the virus without altering virus-associated hemagglutinating and neuraminidase activities. It was found with such enzyme treatment that virus-induced hemolysis and cell fusion are greatly influenced by cholesterol and phospholipids of the envelope. It became clear, that hemolysis and fusion are differently dependent on the nature of lipid components even though mediated by the same viral glycoproteins.  相似文献   

9.
The biochemical and biophysical roles of extracellular calcium ions in HVJ (Sendai virus)-induced cell fusion were studied. (1) Various kinds of cell, such as Ehrlich ascites tumor cells, mouse melanoma cells (B16-CW1 cells) and human epidermoid carcinoma cells (KB cells), could fuse in Ca2+-free medium containing a cheletor, glycoletherdiaminetetraacetic acid, in the same way as in Ca2+-containing medium. (2) The ATP content in Ehrlich ascites tumor cells decreased rapidly when the cells were treated with the virus in Ca2+-free medium but not in Ca2+-containing medium. (3) Intracellular adenine nucleotides leaked out into the reaction medium when the cells were treated with the virus in Ca2+-free medium but not in Ca2+-containing medium. (4) On addition of the virus, O2 consumption of Ehrlich ascites tumor cells decreased in Ca2+-free medium, but not in Ca2+-containing medium. (5) HVJ (Sendai virus) did not affect production of lactate by Ehrlich ascites tumor cells in both Ca2+-free medium and Ca2+-containing medium. These observations suggest that the role of extracellular Ca2+ in virus-induced cell fusion is to maintain the ATP and other intracellular metabolite contents at normal levels instead of triggering the fusion reaction itself.  相似文献   

10.
An assay is presented that allows continuous and sensitive monitoring of membrane fusion in both artificial and biological membrane systems. The method relies upon the relief of fluorescence self-quenching of octadecyl Rhodamine B chloride. When the probe is incorporated into a lipid bilayer at concentrations up to 9 mol% with respect to total lipid, the efficiency of self-quenching is proportional to its surface density. Upon fusion between membranes labeled with the probe and nonlabeled membranes, the decrease in surface density of the fluorophore results in a concomitant, proportional increase in fluorescence intensity, allowing kinetic and quantitative measurements of the fusion process. The kinetics of fusion between phospholipid vesicles monitored with this assay were found to be the same as those determined with a fusion assay based on resonance energy transfer [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099]. Octadecyl Rhodamine B chloride can be readily inserted into native biological membranes by addition of an ethanolic solution of the probe. Evidence is presented showing that the dilution of the fluorophore, occurring when octadecyl Rhodamine containing influenza virus is mixed with phospholipid vesicles at pH 5.0, but not pH 7.4, resulted from virus-vesicle fusion and was not related to processes other than fusion. Furthermore, by use of this method, the kinetics of fusion between Sendai virus and erythrocyte ghosts and virus-induced fusion of ghosts were readily revealed. Dilution of the probe was not observed upon prior treatment of fluorescently labeled Sendai virus with trypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
H Yu  N Soong    W F Anderson 《Journal of virology》1995,69(10):6557-6562
A quantitative analysis of the binding kinetics of intact Moloney murine leukemia retrovirus (MoMuLV) particles with NIH 3T3 cells was performed with an immunofluorescence flow cytometry assay. The virus-cell binding equilibrium dissociation constant (KD), expressed in terms of virus particle concentration, was measured to be 8.5 (+/- 6.4) x 10(-12) M at 4 degrees C and was three- to sixfold lower at temperatures above 15 degrees C. The KD of virus binding is about 1,000-fold lower than the KD of purified MoMuLV envelope. The association rate constant was determined to be 2.5 (+/- 0.9) x 10(9) M-1 min-1 at 4 degrees C and was 5- to 10-fold higher at temperatures above 15 degrees C. The apparent dissociation rate constant at 4 degrees C was 1.1 (+/- 0.4) x 10(-3) min-1 and was doubled for every 10 degrees C increase in temperature over the range tested (15 to 37 degrees C).  相似文献   

12.
Fusion of cells mediated by HVJ was inhibited completely with 5 μg/ml or more of cytochalasin D (CD). With cytochalasin, HVJ-cell interaction at 0 °C proceeded as well as without cytochalasin; HVJ was adsorbed to cell surfaces and the cells agglutinated together. Then the virus particles were enfolded with cell membranes, which resulted in the disappearance of hemadsorption activity on the cell surfaces. When the cell-virus complex was incubated at 37 °C, the early reactions proceeded as well as without cytochalasin; the hemadsorption activity reappeared on the cell surfaces, the viral envelopes fused with cell membranes at the same degree as without cytochalasin, and a stage sensitive to sodium azide appeared as in a control without cytochalasin. But cell-to-cell fusion did not occur in the presence of cytochalasin; cells were dissociated freely from the cell aggregates during incubation. This indicates that cell-to-cell fusion was inhibited but HVJ envelope to cell membrane interactions proceeded well on incubation at 37 °C. These findings suggest that viral envelope-cell membrane fusion and cell-cell fusion are separable, and participation of a cytoskeleton system including microfilaments in the cells is essential for cell-cell fusion.  相似文献   

13.
l-Glutamine requirement for viral maturation was found in BHK-HVJ cells, a cell line of baby hamster kidney cells persistently infected with HVJ (Sendai virus). Synthesis of envelope protein in BHK-HVJ cells was markedly suppressed by deprivation of l-glutamine, whereas development of nucleocapsid (S) antigen was less affected. More detailed examination of this phenomenon was carried out by using a cytolytic system. Growth of HVJ in BHK cells cultured in media deprived of various amino acids was investigated, and omission of l-glutamine from culture medium resulted in a marked inhibitory effect on the release of infectious virus and synthesis of envelope protein, although synthesis of virus-specific RNA and nucleocapsid antigen in the cells was readily detected. When l-glutamine was restored to the culture medium, infectious virus and envelope protein could be detected. l-Glutamic acid, l-aspartic acid, or l-alanine could be substituted for l-glutamine. Effects of l-glutamine deprivation on HVJ growth in several other cells were also investigated. The growth of HVJ in the cells other than BHK and FL cells was not suppressed by lack of l-glutamine. Growth of Sindbis virus in BHK cells was also markedly retarded in the absence of l-glutamine.  相似文献   

14.
The kinetics of the reaction between human chorionic gonadotropin (hCG) and specific gonadotropin receptors in the rat testis were determined at 24 and 37 degrees, over a wide range of hormone concentrations. Hormone concentrations were corrected for the binding activity of the (-125I)hCG tracer preparations. Analysis of the experimental data was performed with an interactive nonlinear curve fitting program, based upon the second-order chemical kinetic differential equation. The mean values for the association rate constant (k1) were 4.7 x 10-7 M-1 min-1 at 24 degrees, and 11.0 x 10-7 M-1 min-1 at 37 degrees. At both temperatures, the values of kl were independent of hormone concentration. Initial dissociation rates were consistent with first order kinetics, with dissociation rate constant (k2) of 1.7 x 10 minus -3 and 4.6 x 10 minus -3 min minus -1 at 24 and 37 degrees, respectively. When studied over longer periods at 24 degrees, the dissociation process appeared to be multiexponential. The kinetics of degradation of (-125I)hCG and receptors were determined at both temperatures, and a mathematical model was developed by modification of the second-order chemical kinetic differential equation to take these factors into account. The application of such a model to hCG kinetic binding data demonstrated that reactant degradation had little significant effect on the derivation of the association rate constant (k1), but caused significant overestimation of the dissociation rate constant (k2) values derived from association experiments. The model was also applied by computer simulation to a theoretical analysis of the effects of degradation of free hormone and receptor sites upon kinetic and steadystate binding data. By this method, the initial velocities of hormone binding were shown to be less affected by degradation than the steady-state levels of hormone-receptor complex. Also, reactant degradation in simulated steady-state experiments caused an underestimate of the apparent equilibrium association constant, but had relatively less effect on the determination of binding site concentration.  相似文献   

15.
A monoclonal antibody, MAbC3, that reacts with a 14,000-molecular-weight envelope protein (14K protein) of vaccinia virus completely inhibited virus-induced cell fusion during infection. Immunoblot and immunofluorescence studies revealed that the 14K protein was synthesized at about 6 to 7 h postinfection and transported from the cytoplasm to the cell surface. Synthesis and transport of the 14K protein during infection occurred in the presence of rifampin, an inhibitor of virus maturation. One- and two-dimensional gel electrophoretic analyses demonstrated that the 14K protein forms largely trimers (42K) that are covalently linked by disulfide bonds. The facts that MAbC3 prevents virus uncoating and blocks virus-induced cell fusion but does not prevent virus attachment to cells and the 14K envelope protein forms trimers all suggest that this protein plays major role in virus penetration.  相似文献   

16.
17.
Aminooxyacetate and alpha-amino-gamma-aminooxybutyrate (canaline) react specifically with the P-pyridoxal groups of cystathionase to produce characteristic changes in the absorption and fluorescence properties of the bound cofactor. The increase in fluorescence at 450 nm was used to monitor the reaction. Aminooxyacetate attacks the Schiff base linkage of the enzyme several times faster (k1 = 3700 M-1 min-1 and k2 = 1000 M-1 min-1) than it attacks the aldehydic carbon of free P-pyridoxal (k = 290 M-1 min-1). Similar results were obtained with canaline. The kinetic studies indicate that a Schiff base linkage in the enzyme cystathionase should offer direct kinetic advantage during the reaction between the substrate and the cofactor. It is also shown that the inhibitor L-alpha-gamma-aminobutyrate reacts with bound P-pyridoxal to form free P-pyridoxamine. The rate of formation of P-pyridoxamine parallels the rate of enzyme inactivation.  相似文献   

18.
N-carboxymethanofuran (carbamate) formation from unprotonated methanofuran (MFR) and CO2 is the first reaction in the reduction of CO2 to methane in methanogenic archaea. The reaction proceeds spontaneously. We address here the question whether the rate of spontaneous carbamate formation is high enough to account for the observed rate of methanogenesis from CO2. The rates of carbamate formation (v1) and cleavage (v2) were determined under equilibrium conditions via 2D proton exchange NMR spectroscopy (EXSY). At pH 7.0 and 300 K the second order rate constant k1* of carbamate formation from 'MFR'(MFR + MFRH+) and 'CO2' (CO2 + H2CO3 + HCO3-+ CO32-) was found to be 7 M-1.s-1 (v1 = k1* ['MFR'] ['CO2']) while the pseudo first order rate constant k2* of carbamate cleavage was 12 s-1 (v2 = k2* [carbamate]). The equilibrium constant K* = k1*/k2* = [carbamate]/['MFR']['CO2'] was 0.6 M-1 at pH 7.0 corresponding to a free energy change DeltaG degrees ' of + 1.3 kJ.mol-1. The pH and temperature dependence of k1*, of k2* and of K* were determined. From the second order rate constant k1* it was calculated that under physiological conditions the rate of spontaneous carbamate formation is of the same order as the maximal rate of methane formation and as the rate of spontaneous CO2 formation from HCO3- in methanogenic archaea, the latter being important as CO2 is mainly present as HCO3- which has to be converted to CO2 before it can react with MFR. An enzyme catalyzed carbamate formation thus appears not to be required for methanogenesis from CO2. Consistent with this conclusion is our finding that the rate of carbamate formation was not enhanced by cell extracts of Methanosarcina barkeri and Methanobacterium thermoautotrophicum or by purified formylmethanofuran dehydrogenase which catalyzes the reduction of N-carboxymethanofuran to N-formylmethanofuran. From the concentrations of 'CO2' and of 'MFR' determined by 1D-NMR spectroscopy and the pKa of H2CO3 and of MFRH+ the concentrations of CO2 and of MFR were obtained, allowing to calculate k1 (v1 = k1 [MFR] [CO2]). The second order rate constant k1 was found to be approximately 1000 M-1 x s-1 at 300 K and pH values between 7.0 and 8. 0 which is in the order of k1 values determined for other carbamate forming reactions by stopped flow.  相似文献   

19.
Sendai virus (hemagglutinating virus of Japan; HVJ) is a negative-strand RNA virus with robust fusion activity, and has been utilized for gene transfer and drug delivery. Hemagglutinin-neuraminidase (HN) protein on the viral membrane is important for cell fusion, but causes agglutination of red blood cells. HN-depleted HVJ has been desired for in vivo transfection in order to improve safety. Here, we succeeded in producing HN-depleted HVJ using HN-specific short interfering RNA (siRNA). Viral production was not affected by the siRNA. HN protein was markedly decreased in the new HVJ, while other viral proteins were retained. Consequently, the hemagglutinating activity was substantially reduced and infection activity was suppressed. When the HN-depleted HVJ was mixed with cultured cells and the mixture was centrifuged for 10min at 2000xg, the modified HVJ recovered its infectivity to approximately 80% of wild HVJ. However, infectivity was abolished in the presence of anti-F antibody. Moreover, transfection of FITC-labeled oligodeoxynucleotides using the modified HVJ was also recovered by centrifugation. Thus, the HN-depleted HVJ produced using siRNA technology will be applicable to a delivery vector.  相似文献   

20.
Several ribonucleases, including onconase and alpha-sarcin, are known to be toxic to tumor cells. On the other hand, although its structure is related to that of alpha-sarcin, RNase T1 is noncytotoxic because of its inability to internalize into tumor cells. In this study, we internalized RNase T1 into human tumor cells via a novel gene transfer reagent, hemagglutinating virus of Japan (HVJ) envelope vector, which resulted in cell death. This cytotoxicity was drastically increased by pretreatment of HVJ envelope vector with protamine sulfate, and was stronger than that of onconase, which is in phase III human clinical trials as a nonmutagenic cancer chemotherapeutic agent. Furthermore, internalized RNase T1 induced apoptotic cell death programs. Because its cytotoxicity is unfortunately not specific to tumor cells, it cannot at present be developed as an anticancer drug. However, we believe that RNase T1 incorporated in HVJ envelope vector will be a unique anticancer drug if HVJ envelope vector can be targeted to tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号