首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avian leukosis viruses of subgroups B, D, and F are cytopathic for chicken cells, whereas viruses of subgroups A, C, and E are not. The amounts of unintegrated linear viral DNA in cells at different times after infection with cytopathic or noncytopathic viruses were determined by hybridization and transfection assays. Shortly after infection, there is a transient accumulation of unintegrated linear viral DNA in cells infected with cytopathic avian leukosis viruses. By 10 days after infection, the majority of this unintegrated viral DNA is not present in the infected cells. The transient cytopathic effect seen in these infected cells also disappears by this time. Low amounts of unintegrated linear viral DNA persist in these cells. Cells infected with noncytopathic viruses do not show this transient accumulation of unintegrated viral DNA. Cells infected with cytopathic viruses and subsequently grown in the presence of neutralizing antibody do not show the transient accumulation of unintegrated viral DNA or cytopathic effects. These results demonstrate a correlation between envelope subgroup, transient accumulation of unintegrated linear viral DNA, and transient cell killing by avian leukosis viruses. The cell killing appears to be the result of massive second-round superinfection by the cytopathic avian leukosis viruses.  相似文献   

2.
Cell killing by avian leukosis viruses.   总被引:16,自引:13,他引:3       下载免费PDF全文
Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with cytopathic avian leukosis viruses.  相似文献   

3.
The relationship of two early events in the establishment of infection by avian retroviruses, the inhibition of viral DNA synthesis in stationary avian cells and the secondary infection which occurs after infection of replicating cells, was investigated. When neutralizing antibody to spleen necrosis virus was used to prevent secondary infection, the amount of unintegrated linear spleen necrosis virus DNA detected was much lower in infected stationary cells than in infected replicating cells. The amount of unintegrated linear spleen necrosis virus DNA in stationary cells was less than one copy per cell even at high multiplicities of infection. Viral DNA synthesis resumed after stimulation of the cells to replicate. The time of this viral DNA synthesis was closely correlated with renewed cellular DNA synthesis. In addition, blocking secondary infection of replicating cells prevented the rate of virus production from reaching the high levels usually associated with a normal productive infection by SNV. Virus production increased if secondary infection was allowed. However, this rise in virus production was not proportional to the amounts of viral DNA integrated after secondary infection.  相似文献   

4.
E Keshet  J J O'Rear  H M Temin 《Cell》1979,16(1):51-61
The cleavage sites of eight restriction endonucleases in linear spleen necrosis virus (SNV) DNA were mapped, and the map was oriented with respect to viral RNA. With the aid of this map, several structural features of the viral DNA were elucidated: unintegrated linear SNV DNA is terminally redundant; the majority of SNV DNA molecules integrated in chicken DNA, which were previously shown to be present in many sites in cellular DNA, are colinear with unintegrated viral DNA; no tandem integration of proviral molecules is detectable; and the majority of integrated SNV DNA molecules, including integrated SNV DNA molecules previously shown to be noninfectious, do not have an altered restriction enzyme digestion pattern.  相似文献   

5.
Formation and structure of infectious DNA of spleen necrosis virus.   总被引:40,自引:25,他引:15       下载免费PDF全文
The kinetics of formation and the structure of infectious DNA of spleen necrosis virus were determined. Nonintegrated infectious viral DNA first appeared 18 to 24 h after infection of dividing cells and persisted for more than 14 days. The nonintegrated infectious viral DNA was in the form of either a double-stranded linear DNA with a molecular weight of 6 X 10(6), detected in both the cytoplasm and nucleus, or a closed circular DNA of the same molecular weight, detected primarily in the nucleus. Integrated infectious viral DNA appeared soon after the nonintegrated infectious viral DNA and was the predominant form of infectious viral DNA late after infection. Integration of the spleen necrosis virus DNA into the chicken cell genome was demonstrated by three independent criteria. Nucleic acid hybridization indicated that the linear infectious viral DNA had a 5- to 10-fold higher specific infectivity than either the closed circular or integrated infectious viral DNA. Infectious viral DNA did not appear in infected stationary cells, indicating some cellular influence on the formation of infectious viral DNA.  相似文献   

6.
Ribonucleotides in unintegrated linear spleen necrosis virus DNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
The structure of unintegrated spleen necrosis virus DNA was characterized by using various chemical and enzymatic treatments in conjunction with denaturing gels and nucleic acid hybridization probes. Throughout the course of the viral infection, the predominant species of viral DNA was that of a linear double-stranded molecule containing ribonucleotides covalently joined to the DNA. The majority of both - and + strands were continuous. The ribonucleotide linkages appeared to be relatively short, and the base composition and distribution of the ribonucleotide linkages were heterogeneous. On the average, the - strand had fewer of the ribonucleotide linkages than did the strand. Viral DNA containing ribonucleotide linkages was infectious in DNA transfection assays. The structure of spleen necrosis virus DNA was different from that of Schmidt-Ruppin Rous sarcoma virus-D, and mixed infections demonstrated that the observed differences are a result of cis-acting functions.  相似文献   

7.
Acute cytopathic retroviral infections are accompanied by the accumulation, due to superinfection, of large amounts of unintegrated viral DNA in the cells. The cytopathic effects of human immunodeficiency virus type 1 (HIV-1) infection are specific for cells that express the CD4 viral receptor and consist of syncytium formation and single-cell lysis. Here we investigated the relationship between superinfection and single-cell lysis by HIV-1. Antiviral agents were added to C8166 or Jurkat lymphocytes after HIV-1 infection had occurred. Treatment with azidothymidine or a neutralizing anti-gp120 monoclonal antibody reduced or eliminated, respectively, the formation of unintegrated viral DNA but did not inhibit single-cell killing. Furthermore, in the infected Jurkat cells, the levels of unintegrated viral DNA peaked several days before significant single-cell lysis was observed. Essentially complete superinfection resistance was established before the occurrence of single-cell killing. These results demonstrate that single-cell lysis by HIV-1 can be dissociated from superinfection and unintegrated viral DNA accumulation. These results also indicate that single-cell killing may involve envelope glycoprotein-receptor interactions not accessible to the exterior of the cell.  相似文献   

8.
9.
Viral DNA in horses infected with equine infectious anemia virus.   总被引:14,自引:12,他引:2       下载免费PDF全文
The amount and distribution of viral DNA were established in a horse acutely infected with the Wyoming strain of equine infectious anemia virus (EIAV). The highest concentration of viral DNA were found in the liver, lymph nodes, bone marrow, and spleen. The kidney, choroid plexus, and peripheral blood leukocytes also contained viral DNA, but at a lower level. It is estimated that at day 16 postinoculation, almost all of the viral DNA was located in the tissues, with the liver alone containing about 90 times more EIAV DNA than the peripheral blood leukocytes did. Assuming a monocyte-macrophage target, each infected cell contained multiple copies of viral DNA (between 6 and 60 copies in liver Kupffer cells). At day 16 postinoculation, most of the EIAV DNA was not integrated into host DNA, but existed in both linear and circular unintegrated forms. In contrast to acute infection, viral DNA was not detectable in tissues from asymptomatic horses with circulating antibody to EIAV.  相似文献   

10.
Reticuloendotheliosis Virus Nucleic Acid Sequences in Cellular DNA   总被引:39,自引:32,他引:7       下载免费PDF全文
Reticuloendotheliosis virus 60S RNA labeled with (125)I, or reticuloendotheliosis virus complementary DNA labeled with (3)H, were hybridized to DNAs from infected chicken and pheasant cells. Most of the sequences of the viral RNA were found in the infected cell DNAs. The reticuloendotheliosis viruses, therefore, replicate through a DNA intermediate. The same labeled nucleic acids were hybridized to DNA of uninfected chicken, pheasant, quail, turkey, and duck. About 10% of the sequences of reticuloendotheliosis virus RNA were present in the DNA of uninfected chicken, pheasant, quail, and turkey. None were detected in DNA of duck. The specificity of the hybridization was shown by competition between unlabeled and (125)I-labeled viral RNAs and by determination of melting temperatures. In contrast, (125)I-labeled RNA of Rous-associated virus-O, an avian leukosis-sarcoma virus, hybridized 55% to DNA of uninfected chicken, 20% to DNA of uninfected pheasant, 15% to DNA of uninfected quail, 10% to DNA of uninfected turkey, and less than 1% to DNA of uninfected duck.  相似文献   

11.
To see if integration of the provirus resulting from RNA tumor virus infection is limited to specific sites in the cell DNA, the variation in the number of copies of virus-specific DNA produced and integrated in chicken embryo fibroblasts after RAV-2 infection with different multiplicities has been determined at short times, long times, and several transfers after infection. The number of copies of viral DNA in cells was determined by initial hybridization kinetics of single-stranded viral complementary DNA with a moderate excess of cell DNA. The approach took into account the different sizes of cell DNA and complementary DNA in the hybridization mixture. It was found that uninfected chicken embryo fibroblasts have approximately seven copies, part haploid genome of DNA sequences homologous to part of the Rous-association virus 2 (RAV-2) genome. Infection with RAV-2 adds additional copies, and different sequences, of RAV -2- specific DNA. By 13 h postinfection, there are 3 to 10 additional copies per haploid genome. This number can not be increased by increasing the multiplicity of infection, and stays relatively constant up to 20 h postinfection, when some of the additional viral DNA is integrated. Between 20 and 40 h postinfection, the cells accumulated up to 100 copies per haploid genome of viral DNA. Most of these are unintegrated. This number decreases with cell transfer, until cells are left with one to three copies of additional viral DNA sequences per haploid genome, of which most are integrated. The finding that viral infection causes the permanent addition of one to three copies of integrated viral DNA, despite the cells being confronted with up to 100 copies per haploid genome after infection, is consistent with a hypothesis that chicken cells contain a limited number of specific integration sites for the oncornavirus genome.  相似文献   

12.
Previously, we reported (Fritsch and Temin, J. Virol. 21:119-130, 1977) that infectious viral DNA was not present in spleen necrosis virus-infected stationary chicken cells. However, a stable intermediate was present in such infected stationary cells as evidenced by the appearance of infectious viral DNA shortly after serum stimulation of these cells. After serum stimulation of infected stationary cells, the infectious viral DNA appeared first in the nucleus. In contrast, in infected dividing cells the infectious viral DNA appeared first in the cytoplasm. Significantly reduced amounts of complete plus- or minus-strand viral DNAs were detected by nucleic acid hybridization in stationary chicken cells infected with spleen necrosis virus or Schmidt-Ruppin Rous sarcoma virus compared with the amounts detected in infected dividing cells. These experiments indicated that infected stationary cells did not contain complete noninfectious copies of viral DNA. Furthermore, 5-bromodeoxyuridine labeling and cesium chloride density gradient centrifugation analysis of the infectious viral DNA that appeared after serum stimulation of infected stationary cells indicated that most viral DNA synthesis occurred after addition of fresh serum.  相似文献   

13.
N Battula  H M Temin 《Cell》1978,13(2):387-398
The pattern of integration for the infectious DNA of two avian reticuloendotheliosis viruses whose DNA is not inactivated by digestion with the restriction endonuclease, Eco RI was determined. High molecular weight DNA from infected chicken, turkey and pheasant cells was digested with Eco RI, electrophoresed through agarose gels and assayed for infectivity. The same patterns of integration of infectious viral DNA were found for these species of avian cells infected at high or low multiplicities with two reticuloendotheliosis viruses. There were multiple sites of integration in acutely infected cells with concomitant cell death. There was a single site of integration in chronically infected cells with no cell death. There were more integrated infectious viral DNA molecules per cell in acutely infected cells than in chronically infected cells. These results are consistent with the hypotheses that the cell death in the acute phase of infection is a result of the integration of the infectious viral DNA at multiple sites, and that only those cells survive that have the infectious viral DNA integrated exclusively at the single site.  相似文献   

14.
15.
We have attempted to distinguish integrated and unintegrated forms of avian sarcoma virus-specific DNA in cells by sedimentaton through an alkaline sucrose gradient in a slowly reorienting zonal rotor. Results obtained with this procedure are similar to those obtained by the more convenient analysis of networks of high-molecular-weight cell DNA. Most, if not all, viral DNA appears completely integrated into the host cell genome in an avian sarcoma virus-transformed mammalian cell and in normal chicken cells (in which viral DNA is genetically transmitted). Fully transformed duck cells and duck embryo fibroblasts infected for 20 to 72 h contain both integrated and unintegrated viral DNA; up to one copy per cell is integrated within 20 h after infection, and four to eight copies are integrated in fully transformed cells. The amount of unintegrated DNA varies but may comprise over 75% of the viral DNA in acutely infected cells and from 20 to 70% of the viral DNA in fully transformed cells. The unintegrated DNA in either case consists principally of duplexes with "minus" strands the length of a subunit of the viral genome (2.5 X 10(6) to 3 X 10(6) daltons) and relatively short "plus" strands (0.5 X 10(6) to 1.0 X 10(6) daltons).  相似文献   

16.
17.
The major species of unintegrated linear viral DNA identified in chicken embryonic fibroblasts infected with either the avian myeloblastosis-associated viruses (MAV-1, MAV-2) or the standard avian myeloblastosis virus complex (AMV-S) has a mass of 5.3 X 10(6) daltons. An additional minor DNA component observed only in AMV-S-infected cells has a mass of 4.9 X 10(6) daltons. The unintegrated linear viral DNAs and integrated proviruses of MAV-1 and MAV-2 have been analyzed by digestion with the restriction endonucleases EcoRI and HindIII. MAV-2 lacks a HindIII site present in MAV-1. These fragments have been compared to those generated by EcoRI and HindIII digestion of linear viral DNAs of AMV-S. Restriction enzyme digestion of AMV-S viral DNA produced unique fragments not found with either MAV-1 or MAV-2 viral DNAs. The major viral component present in AMV-S stocks has the HindIII restriction pattern of MAV-1. Restriction enzyme analysis of the 5.3 X 10(6)-dalton unintegrated MAV viral DNAs and their integrated proviruses suggests that the DNAs have a direct terminal redundancy of approximately 0.3 megadaltons and integrate colinearly with respect to the unintegrated linear DNA.  相似文献   

18.
Effect of aphidicolin on avian sarcoma virus replication.   总被引:11,自引:4,他引:7       下载免费PDF全文
We studied the effect of aphidicolin, an inhibitor of eucaryotic DNA polymerase alpha, on viral DNA replication and integration during the first 24 h after infection of quail embryo fibroblasts with avian sarcoma virus. In drug-treated cells, the synthesis of unintegrated linear viral DNA species was not impaired; however, the subsequent accumulation of circular viral DNA species and integrated proviral DNA was reversibly inhibited. After removal of the drug, circular viral DNA species were derived from preexisting linear viral DNA species, instead of being derived by de novo synthesis.  相似文献   

19.
The interaction of polyoma virus with a continuous line of rat cells was studied. Infection of these cells with polyoma did not cause virus multiplication but induced transformation. Transformed cells did not produce infectious virus, but in all clones tested virus was rescuable upon fusion with permissive mouse cells. Transformed rat cells contained, in addition to integrated viral genomes, 20 to 50 copies of nonintegrated viral DNA equivalents per cell (average). "Free" viral DNA molecules were also found in cells transformed by the ts-a and ts-8 polyoma mutants and kept at 33 C. This was not due to a virus carrier state, since the number of nonintegrated viral DNA molecules was found to be unchanged when cells were grown in the presence of antipolyoma serum. Recloning of the transformed cell lines produced subclones, which also contained free viral DNA. Most of these molecules were supercoiled and were found in the muclei of the transformed cells. The nonintegrated viral DNA is infectious. Its specifici infectivity is, however, about 100-fold lower than that of polyoma DNA extracted from productively infected cells, suggesting that these molecules contain a large proportion of defectives.  相似文献   

20.
3H-labeled 35S RNA from avian myeloblastosis virus (AMV), Rous associated virus (RAV)-0, RAV-60, RAV-61, RAV-2, or B-77(w) was hybridized with an excess of cellular DNA from different avian species, i.e., normal or leukemic chickens, normal pheasants, turkeys, Japanese quails, or ducks. Approximately two to three copies of endogenous viral DNA were estimated to be present per diploid of normal chicken cell genome. In leukemic chicken myeloblasts induced by AMV, the number of viral sequences appeared to have doubled. The hybrids formed between viral RNA and DNA from leukemic chicken cells melted with a Tm 1 to 6 C higher than that of hybrids formed between viral RNA and normal chicken cell DNA. All of the viral RNAs tested, except RAV-61, hybridized the most with DNA from AMV-infected chicken cells, followed by DNA from normal chicken cells, and then pheasant DNA. RAV-61 RNA hybridized maximally (39%) with pheasant DNA, followed by DNA from leukemic (34%), and then normal (29%) chicken cells. All viral RNAs tested hybridized little with Japanese quail DNA (2 to 5%), turkey DNA (2 to 4%), or duck DNA (1%). DNA from normal chicken cells contained only 60 to 70% of the RAV-60 genetic information, and normal pheasant cells lacked some RAV-61 DNA sequences. RAV-60 and RAV-61 genomes were more homologous to the RAV-0 genome than to the genome of RAV-2, AMV, or B-77(s). RAV-60 and RAV-61 appear to be recombinants between endogenous and exogenous viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号