首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. 1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate.
2. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate.
3. 3. Among the ligands tested, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate.
4. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K for vanadate was 1.5 μM and inhibition was nearly complete at saturating vanadate concentrations.
5. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.
Keywords: Ca2+-ATPase; Red cell membrane; Vanadate; Calmodulin  相似文献   

2.
Vanadate inhibits the Ca++-ATPase of sarcoplasmic reticulum from pig heart half maximally at about 10?5 M. Mg++ promotes this inhibition by vanadate whereas increasing Ca++-concentrations protect the enzyme against vanadate inhibition. Keeping the ratio Mg++ATP constant there was no influence of ATP on the vanadate inhibition at concentrations up to 5 × 10?3 M ATP. Whenever the ratio Mg++ATP was higher than 1:1 the inhibitory effect of vanadate on the Ca++-ATPase was increased.  相似文献   

3.
4.
Effects of vanadate on the plasma membrane ATPase of red beet and corn   总被引:15,自引:14,他引:1       下载免费PDF全文
The effect of vanadate on the plant plasma membrane ATPase were investigated in plasma membrane fractions derived from corn roots (Zea mays L.) and red beets (Beta vulgaris L.). The Ki for vanadate inhibition of the plasma membrane ATPase from corn roots and red beets was between 6 and 15 micromolar vanadate. In both membrane fractions, 80% to 90% of the total ATPase was inhibited at vanadate concentrations below 100 micromolar. Vanadate inhibition was optimal at pH 6.5, enhanced by the presence of K+, and was partially reversed by 1 millimolar EDTA. The Mg:ATP kinetics for the plasma membrane ATPase were hyperbolic in both the absence and presence of vanadate. Vanadate decreased both the Km and Vmax of the red beet plasma membrane ATPase, indicating that vanadate inhibits the ATPase uncompetitively. These results indicate many similarities with respect to vanadate inhibition between the plant plasma membrane ATPase and other major iontranslocating ATPases from fungal and animal cells. The high sensitivity to vanadate reported here, however, differs from other reports of vanadate inhibition of the plant plasma membrane ATPase from corn, beets, and in some instances oats.  相似文献   

5.
Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases.   总被引:15,自引:0,他引:15  
Vanadate is a potent inhibitor of the Ca2+-ATPase activity of sarcoplasmic reticulum in the presence of A-23187. The purified enzyme is sensitive to vanadate even in the absence of the ionophore. Ca2+ and norepinephrine protect the enzyme against inhibition of vanadate. The nonspecificity of vanadate is emphasized by the finding of inhibition of several other ATPases including the Ca2+Mg2+-ATPases of the ascites and human red cell plasma membranes, Mg2+-ATPase of the ascites plasma membrane, and the K+-ATPases of E.coli and hog gastric mucosal cell membranes. The ascites plasma membrane Ca2+-ATPase (an ecto ATPase) and mitochondrial ATPase are not inhibited by vanadate.  相似文献   

6.
(Na+, K+)-ATPase (EC 3.6.1.3) from kidney is more sensitive to inhibition by vanadate than red cell (Na+,K+)-ATPase. The difference appears to be in the apparent affinities of the two enzymes for K+ and Na+ at sites where K+ promotes and Na+ opposes vanadate binding. As a result of Na+-K+ competition at these sites, reversal of vanadate inhibition was accomplished at lower Na+ concentrations in red cell than in kidney (Na+,K+)-ATPase. It is possible that vanadate could selectively regulate Na+ transport in the kidney.  相似文献   

7.
The interactions of ouabain and vanadate with (Na+,K+)ATPase were investigated at different potassium concentrations. Also, the contractile effects of a mixture of these two inhibitors were compared to those produced by ouabain or vanadate alone. The results from the enzyme and contractile studies suggested that inhibition of sarcolemmal (Na+,K+)ATPase was involved in mediating the positive inotropic effect of vanadate.  相似文献   

8.
Vanadate, a potent inhibitor of P-type ATPases, reduces the electrochemical gradient considerably. H+-extrusion in cells of Candida albicans, a pathogenic yeast, was strongly inhibited in the presence of 25mM phosphocreatine (PCr) by about 83%. H+-extrusion was further inhibited by 25 mM PCr in the presence of vanadate; 89% with 1 mM, 92% with 2 mM and 99% with 5 mM vanadate. 2 mM vanadate caused 90%, 92% and 96% inhibition in the presence of 20 mM, 30 mM and 40 mM PCr, respectively. Creatine (Cr) had a negligible effect on H+ - extrusion. The inhibition caused by 1 mM, 2 mM and 5 mM vanadate alone was 66%, 77% and 88%, respectively. PCr and vanadate inhibit proton extrusion with almost equal magnitude. It can be concluded that phosphate moiety of PCr interacts with the ATPase and is similar to vanadate interaction. Since PCr is having such a drastic inhibitory effect on ATPase activity we can say that it is playing a significant role in holding a check on this pathogenic fungus in healthy human hosts.  相似文献   

9.
The Na+, K+-ATPase activity and its response to vanadate inhibition was investigated in cerebral cortex homogenates of 7-, 12- and 18-day-old rats. The enzyme was inhibited by vanadate in a dose-dependent manner in all these age groups. Furthermore, there was a different sensitivity towards vanadate during postnatal development; the concentration of V+5 needed for 50% inhibiton of Na+, K+-ATPase was 1.1×10–6M, 2×10–7M and 4.4×10–7M for 7-, 12- and 18-day-old rats, respectively. It is suggested that the different sensitivity of Na+, K+-ATPase towards vanadate inhibition during postnatal development might be due to age-dependent changes in the ratio of various cell types.Special Issue dedicated to Dr. O. H. Lowry.  相似文献   

10.
An H+ ATPase at the plasma-membrane of guard cells is thought to establish an electrochemical gradient that drives K+ and Cl uptake, resulting in osmotic swelling of the guard cells and stomatal opening. There are, however, conflicting results regarding the effectiveness of the plasma-membrane H+-ATPase inhibitor, vanadate, in inhibiting both H+ extrusion from guard cells and stomatal opening. We found that 1 mM vanadate inhibited light-stimulated stomatal opening in epidermal peels of Commelina communis L. only at KCl concentrations lower than 50 mM. When impermeant n-methylglucamine and HCl (pH 7.2) were substituted for KCl, vanadate inhibition was still not observed at total salt concentrations50 mM. In contrast, in the absence of Cl, when V2O5 was used to buffer KOH, vanadate inhibition of stomatal opening occurred at K+ concentrations as high as 70 mM. Partial vanadate inhibition was observed in the presence of the impermeant anion, iminodiacetic acid (100 mM KHN(CH2CO2H)2). These results indicate that high concentrations of permeant anions prevent vanadate uptake and consequently prevent its inhibitory effect. In support of this hypothesis, an inhibitor of anion uptake, anthracene-9-carboxylic acid, partially prevented vanadate inhibition of stomatal opening. Other anion-uptake inhibitors (1 mM 4,4-diisothiocyanatostilbene-2,2-disulfonic acid, 1 mM 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid, 200 M Zn2+) were not effective. Decreased vanadate inhibition at high Cl/vanadate ratios may result from competition between vanadate and Cl for uptake. Unlike metabolic inhibitors, vanadate did not affect the extent of stomatal closure stimulated by darkness, further indicating that the observed action of vanadate represents a specific inhibition of the guard-cell H+ ATPase.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - FC fusicoccin - SITS 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid We thank Drs. R.T. Leonard (University of California, Riverside, USA) and K.A, Rubinson (Yellow Springs, Oh., USA) for helpful comments on the research, Janet Sherwood (Harvard University) for excellent plant care, and Angela Ciamarra, Anne Gershenson, Gustavo Lara (Harvard University) and Orit Tal (Hebrew University) for valuable technical assistance. This research was supported by a grant from the National Science Foundation (DCB-8904041) to S.M.A.  相似文献   

11.
The initial rate of quenching of quinacrine fluorescence was used to monitor Mg:ATP-dependent H+-pumping in membrane vesicles from corn (Zea mays L. cv WF9 × MO17) roots and obtain a preparation in which vanadate-sensitive H+-pumping could be observed. Separation of membranes on a linear sucrose density gradient resulted in two distinct peaks of H+-pumping activity: a major one, at density 1.11 grams per cubic centimeter, was sensitive to NO3 and resistant to vanadate, while a minor one, at density 1.17 grams per cubic centimeter, was substantially resistant to NO3 and sensitive to vanadate. A membrane fraction enriched in the vanadate-sensitive H+-pump could be obtained by washing microsomes prepared in the presence of 10% glycerol with 0.25 molar KI. The kinetics of inhibition of H+-pumping by vanadate in this membrane preparation indicated that most of the H+-pumping activity in this fraction is sensitive to inhibition by vanadate, 50% inhibition being reached at about 60 micromolar vanadate. This value is fairly close to that observed for inhibition by vanadate of the ATPase activity in similar experimental conditions (40 micromolar). The inhibitor sensitivity, divalent cation dependence, pH optimum (6.5), and Km for ATP (0.7 millimolar) of the H+-pumping activity match quite closely those reported for the plasma membrane ATPase of corn roots and other plant materials.  相似文献   

12.
Vanadate selectively inhibited dynein ATPase, 10?7M causing 50% inhibition under favorable conditions. Actomyosin ATPase was inhibited only by up to a thousand times higher concentration. In both cases vanadate inhibition was not competitive with ATP. Reversal by catecholamines was correlated with reduction of vanadate. The motility of demembranated sea urchin or mammalian sperm was arrested by vanadate concentrations similar to those which inhibited dynein ATPase; a thousand times higher concentration was needed to paralyze live sperm. The possible utility of vanadate sensitivity as a probe for dynein involvement in non-axonemal motile systems was explored with respect to brain ATPase associated with tubulin obtained by cycles of assembly, and ATPases associated with mitotic apparatus isolated from sea urchin embryos.  相似文献   

13.
The effect of vanadate on the phosphorylation of synaptosomal membrane proteins prepared from rat cerebral cortex was studied. Vanadate concentrations of 10–6, 10–5, and 10–4 M increased the endogenous phosphorylation activity by 25%, 37%, and 75%, respectively. Increasing the ATP concentration in the assay medium from 50 to 500 M did not influence the above effect. A commercial preparation of the purified protein kinase was stimulated 40% by 10–3 M vanadate. Calcium-calmodulin dependent activity was stimulated only 20% by 10–5 M vanadate. The effect was not enhanced by further increasing vanadate concentration. Addition of calcium ions (above 50 M) suppressed the vanadate effect, while an inhibition was observed at high Ca2+ concentration (2.5 mM). Below 50 M calcium ions stimulated phosphorylation activity in the absence of vanadate and did not affect the stimulatory action of vanadate. Cyclic AMP-dependent endogenous phosphorylation was also stimulated by vanadate. Activation by cAMP could not be observed at vanadate concentrations above 10–6 M. Possible mechanisms of the vanadate effect are discussed.  相似文献   

14.
The sarcoplasmic reticulum Ca2+-ATPase was reacted with vanadate in the presence of Mg2+ and EGTA, and the effect of Ca2+, Mg2+ and ATP on the kinetics of vanadate release from the enzyme vanadate complex was studied after dilution with vanadate-free media. Ca2+ increased, whereas ATP decreased the rate of vanadate release. In absence of free Mg2+ in the release media ATP was bound to the vanadate-reacted Ca2+-ATPase with high affinity (Kd 4–5 μM), and full saturation with ATP resulted in complete inhibition of vanadate release. In media containing free Mg2+, where ATP predominantly was present as MgATP, binding of the nucleotide to vanadate-reacted Ca2+-ATPase occurred with low apparent affinity. Mg2+ alone did not affect the rate of vanadate release. At saturating ATP concentrations the release rate in the presence of free Mg2+ was less inhibited than in its absence. These results indicate that uncomplexed ATP interacts with the same Mg2+ at the catalytic site, which is involved in formation of the enzyme-vanadate complex (EMgV), and thereby hinders dissociation of vanadate. Destabilization of the complex by free Mg2+ may be caused by the presence of an additional magnesium ion in the catalytic site together with ATP.  相似文献   

15.
T Akera  K Takeda  S Yamamoto  T M Brody 《Life sciences》1979,25(21):1803-1811
Vanadate has been shown to be a potent inhibitor of isolated Na+,K+-ATPase. Since the inhibition of this enzyme system has been implicated in a mechanism for the positive inotropic action of cardiac glycosides, the cardiac actions of vanadate were examined in connection with its action on Na+,K+-ATPase. Vanadate inhibited isolated Na+,K+-ATPase obtained from various tissues. The differences in the vanadate sensitivity due to enzyme source were relatively small. K+-stimulated phosphatase activity was more sensitive than Na+,K+-stimulated ATP hydrolysis. The compounds was more potent than phosphate in supporting [3H] oubain binding in the presence of Mg2+, indicating a higher affinity of the enzyme for vanadate. It, however, failed to inhibit oubain sensitive 86Rb uptake in electrically stimulated atrial muscle of guinea-pig hearts in concentrations which would inhibit isolated Na+,K+-ATPase. These latter concentrations of vanadate also failed to produce positive inotropic effects in electrically stimulated left atrial preparations of guinea-pig hearts. Higher concentrations produced marked negative inotropic effects associated with a shortening of the action potential duration. These results indicate that vanadate is a potent inhibitor of isolated Na+,K+-ATPase, but cannot inhibit the enzyme in intact myocardial cells or produce positive inotropic effects when applied extracellularly. Inhibitory sites on the enzyme are probably located at the internal surface of the cell membrane which are normally inaccessible to vanadate in intact tissue.  相似文献   

16.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5′-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at ~10 μM vanadate, corresponding to ~12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

17.
《BBA》1985,808(2):316-322
The dependence of both respiration and total activity of ATP-consuming reactions on the cellular adenine nucleotide pattern was investigated in intact bovine spermatozoa. ATP consumption was manipulated by inhibition with vanadate and activation with caffeine, leading to a decrease or increase in the rate of respiration up to 70% or 20%, respectively. Oligomycin blocked the respiration to the same extent as did vanadate, suggesting that the total extramitochondrial ATP-consuming activity is vanadate-sensitive. The major part of ATP utilization must be linked to dynein ATPase, since inhibition of (Na+, K+) ATPase by ouabain showed only a small effect on respiration (−17%). Being a potent inhibitor of dynein ATPase, vanadate drastically reduced the amount of motile cells, whereas caffeine tended to increase the intensity of motion. The effects of vanadate or caffeine on respiration were paralleled by changes in cellular ATP, reflecting the response of mitochondrial respiration on the cellular ATP/ADP ratio. Respiration was found to depend on changes in the ATP/ADP ratio in the range from about 3 (+ caffeine) to 9 (+ vanadate). The range of response of ATP consumption to the ATP/ADP ratio was determined by varying the mitochondrial ATP production via the concentration of lactate which was used as substrate. The measured effects on both respiratory rate and ATP/ADP ratio suggested that ATP consumption was markedly dependent on ATP/ADP ratios below 5. It is concluded that lactate concentrations above 1 mM sufficiently supply bovine spermatozoa with substrate and the energy turnover is mainly limited by the activity of dynein ATPase rather than by the capacity of mitochondrial oxidative phosphorylation.  相似文献   

18.
The structure of vanadate, a phosphate analogue which was suggested to function in the presence of tightly bound ADP and divalent cations as a transition state inhibitor of CF1-ATPase, was investigated by X-ray absorption spectroscopy. Analysis of the vanadium K-edge was used for determination of the structure of vanadate bound to a single site in CF1-ATPase containing a single tightly bound ADP. There was a decrease in the intensity of the 1s-3d pre-edge transition and a change in the shape of two other shoulders at the edge region upon binding of vanadate to CF1 in the presence of Mg2+ ions. The changes are due to alteration in the structure of vanadium from tetrahedral to a five-coordinated trigonal bipyramidal geometry. Comparison of the pre-edge peak intensity of ADP-vanadate complex, and model compound resolved by crystallography support the proposed structure of CF1-bound vanadate. 51V NMR measurements were used to verify the pentacoordinated structure of ADP-vanadate complex used as a model in the X-ray absorption studies. The inhibition of a single and multiple site activity by vanadate and by MgADP was measured. Vanadate inhibition of CF1-ATPase activity decreased more than 90 fold in the presence of MgADP. A differential specificity of the inhibition in single and multiple mode of activity was observed. It is suggested that ADP-vanadate binds to the active sites of the enzyme as a pentacoordinated vanadium having approximate trigonal bipyramidal geometry. This structure is analogous to the proposed transition state of the phosphate during the synthesis and the hydrolysis of ATP by CF1.  相似文献   

19.
Summary A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 M vanadate (Na3VO4) and nearly abolished by 100 M vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 M, and was inhibited up to 80% by 15 to 20 M vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 M for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.  相似文献   

20.
Since it has been claimed that vanadate is an endogenous regulator of Na/K-ATPase activity and that it potentiates the toxicity of cardiac glycosides, we were alarmed to discover that certain Finnish physicians were prescribing vanadate in combination with other trace minerals to elderly patients for many different chronic diseases (e.g., cancer, rheumatism). To study the interaction of vanadate and cardiac glycosides, we fed vanadate in the drinking water (25 μg/mL) to guinea pigs for 20 d, and studied either their sensitivity to the acute toxicity of the cardiac glycoside ouabain or whether the vanadate would influence the subacute toxicity of ouabain. Vanadate had no influence on the toxicity of ouabain either acute or subchronically administered, nor was there any sign of inhibition of Na/K-ATPase activity as measured by86Rb-uptake into intact erythrocytes (RBCs), RBC content of sodium or potassium or Na/K-ATPase activity in RBC membranes prepared from the vanadate-treated guinea pigs. Vanadate had been absorbed in substantial quantities from the gastrointestinal tract, since serum, heart, liver, and especially kidney contained measurable amounts of vanadium in contrast to controls, but it is concluded that this vanadate is not in a biologically active form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号