首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human spermatozoa stimulated with progesterone (a product of the cumulus and thus encountered by sperm prior to fertilization in vivo) apparently mobilize Ca(2+) and respond very differently according to the way in which the steroid is presented. A progesterone concentration ramp (0-3 microM) induces [Ca(2+)](i) oscillations (repetitive store mobilization) which modify flagellar beating, whereas bolus application of micromolar progesterone causes a single large transient (causing acrosome reaction) which is apparently dependent upon Ca(2+) influx. We have investigated Ca(2+)-mobilization and functional responses in human sperm exposed to 3 muM progesterone. The [Ca(2+)](i) response to progesterone was abolished by 4 min incubation in 0 Ca(2+) medium (2 mM EGTA) but in nominally Ca(2+)-free medium (no added Ca(2+); 0 EGTA) a smaller, slow response occurred. Single cell imaging showed a similar effect of nominally Ca(2+)-free medium and approximately 5% of cells generated a small transient even in the presence of EGTA. When cells were exposed to EGTA-containing saline (5 min) and then returned to nominally Ca(2+)-free medium before stimulation, the [Ca(2+)](i) transient was greatly delayed (approximately 50 s) and rise time was doubled in comparison to cells not subjected to EGTA pre-treatment. We conclude that mobilization of stored Ca(2+) contributes a 'slow' component to the progesterone-induced [Ca(2+)](i) transient and that incubation in EGTA-buffered saline is able rapidly to deplete this store. Analysis of flagellar activity induced by 3 muM progesterone showed an effect (modified beating) associated with the [Ca(2+)](i) transient, in >80% of cells bathed in nominally Ca(2+)-free medium. This was reduced greatly in cells subjected to 5 min EGTA pre-treatment. The store-mediated transient showed a pharmacological sensitivity similar to that of progesterone-induced [Ca(2+)](i) oscillations (consistent with filling of the store by an SPCA) suggesting that the transient induced by micromolar progesterone is a 'single shot' activation of the same store that generates Ca(2+) oscillations.  相似文献   

2.
The steroid progesterone, an agonist of acrosome reaction, induces a biphasic [Ca(2+)](i)-signal in human sperm comprising an initial transient [Ca(2+)](i) elevation, and a subsequent ramp or plateau. Nifedipine, an inhibitor of voltage-operated Ca(2+) channels, inhibits progesterone-induced acrosome reaction in human sperm, but fluorimetric studies have detected no effect of this compound on the progesterone-induced [Ca(2+)](i) signal. We have used single-cell imaging to study the effects of nifedipine on [Ca(2+)](i) signalling in human sperm. Analysis of mean responses from large numbers of cells showed that treatment with nifedipine reduced the duration but not the amplitude of the progesterone-induced [Ca(2+)](i) transient. In control cells, the latency of the transient peak (maximum fluorescence) fell within the range of 30-105 s. In the presence of nifedipine, very few cells peaked "late" (>60 s after application of progesterone). Analysis of transient responses in control cells revealed characteristic "early" and "late" responses, most cells showing both "early" and "late" transients, whereas "late" transients were rare and smaller in the presence of nifedipine. Sustained responses showed strong association with late transients, and occurrence and amplitude of sustained responses were significantly reduced in nifedipine pretreated cells.These findings are consistent with the occurrence of a discrete, nifedipine-sensitive component of the progesterone-induced [Ca(2+)](i) transient that peaks 1-2 min after exposure to the hormone and is crucial for the induction of the sustained [Ca(2+)](i) signal.  相似文献   

3.
Sperm from the toad Bufo arenarum must penetrate the egg jelly before reaching the vitelline envelope (VE), where the acrosome reaction is triggered. When the jelly coat is removed, sperm still bind to the VE, but acrosomal exocytosis is not promoted. Our previous work demonstrated that diffusible substances of the jelly coat, termed "egg water" (EW), triggered capacitation-like changes in B. arenarum sperm, promoting the acquisition of a transient fertilizing capacity. In the present work, we correlated this fertilizing capacity with the ability of the sperm to undergo the acrosome reaction, further substantiating the role of the jelly coat in fertilization. When sperm were exposed to the VE, only those preincubated in EW for 5 or 8 min underwent an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which led to acrosomal exocytosis. Responsiveness to the VE was not acquired on preincubation in EW for 2 or 15 min or in Ringer solution regardless of the preincubation time. In contrast, depletion of intracellular Ca(2+) stores (induced by thapsigargin) promoted [Ca(2+)](i) rise and the acrosome reaction even in sperm that were not exposed to EW. Acrosomal exocytosis was blocked by the presence of Ca(2+) chelators independent of whether a physiological or pharmacological stimulus was used. However, Ni(2+) and mibefradil prevented [Ca(2+)](i) rise and the acrosome reaction of sperm exposed to the VE but not of sperm exposed to thapsigargin. These data suggest that the acrosomal responsiveness of B. arenarum sperm, present during a narrow period, is acquired during EW incubation and involves the modulation of a voltage-dependent Ca(2+) channel.  相似文献   

4.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

5.
The genomic and nongenomic effects of aldosterone on the intracellular pH recovery rate (pHirr) via H(+)-ATPase and on cytosolic free calcium concentration ([Ca(2+)](i)) were investigated in isolated proximal S3 segments of rats during superfusion with an Na(+)-free solution, by using the fluorescent probes BCECF-AM and FLUO-4-AM, respectively. The pHirr, after cellular acidification with a NH(4)Cl pulse, was 0.064 ± 0.003 pH units/min (n = 17/74) and was abolished with concanamycin. Aldosterone (10(-12), 10(-10), 10(-8), or 10(-6) M with 1-h or 15- or 2-min preincubation) increased the pHirr. The baseline [Ca(2+)](i) was 103 ± 2 nM (n = 58). After 1 min of aldosterone preincubation, there was a transient and dose-dependent increase in [Ca(2+)](i) and after 6-min preincubation there was a new increase in [Ca(2+)](i) that persisted after 1 h. Spironolactone [mineralocorticoid (MR) antagonist], actinomycin D, or cycloheximide did not affect the effects of aldosterone (15- or 2-min preincubation) on pHirr and on [Ca(2+)](i) but inhibited the effects of aldosterone (1-h preincubation) on these parameters. RU 486 [glucocorticoid (GR) antagonist] and dimethyl-BAPTA (Ca(2+) chelator) prevented the effect of aldosterone on both parameters. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on the H(+)-ATPase and on [Ca(2+)](i). The results are compatible with stimulation of the H(+)-ATPase by increases in [Ca(2+)](i) (at 10(-12)-10(-6) M aldosterone) and inhibition of the H(+)-ATPase by decreases in [Ca(2+)](i) (at 10(-12) or 10(-6) M aldosterone plus RU 486).  相似文献   

6.
Fluorimetric studies on progesterone-induced [Ca(2+)](i) signalling in mammalian spermatozoa show both the well-characterised [Ca(2+)](i) transient and a subsequent sustained phase. However, the sustained phase is thought to reflect release of the fluorochrome during the acrosome reaction and has not been subject to critical investigation. We have used single-cell imaging of [Ca(2+)](i) to analyse the progesterone-induced [Ca(2+)](i) response in large numbers (>2000) of capacitated, human spermatozoa. In 70% of cells, treatment with progesterone induced a transient increase, which typically peaked within 1 min and decayed with a similar time course. Upon rapid application of progesterone this response peaked within 5-20 s. In 35% of progesterone-treated spermatozoa a sustained elevation of [Ca(2+)](i) occurred, which became discernible during the falling phase of the transient response and persisted for at least 20 min. Both [Ca(2+)](i) responses were localised to the postacrosomal region. Averaging of large numbers of single cell responses generated traces similar to those seen in fluorimetric studies. Although the sustained response was strongly associated with the initial, transient response, a few spermatozoa generated sustained responses that were not preceded by a significant transient response (5% of cells). It is concluded that a genuine biphasic [Ca(2+)](i) signal is activated by progesterone and that the sustained response is a discrete signalling event with biological significance.  相似文献   

7.
To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).  相似文献   

8.
Neurotrophins [e.g., brain-derived neurotrophic factor (BDNF), neurotrophin 4 (NT4)], known to affect neuronal structure and function, are expressed in nonneuronal tissues including the airway. However, their function is unclear. We examined the effect of acute vs. prolonged neurotrophin exposure on regulation of airway smooth muscle (ASM) intracellular Ca(2+) concentration ([Ca(2+)](i)): sarcoplasmic reticulum (SR) Ca(2+) release and Ca(2+) influx (specifically store-operated Ca(2+) entry, SOCE). Human ASM cells were incubated for 30 min in medium (control) or 1 or 10 nM BDNF, NT3, or NT4 (acute exposure) or overnight in 1 nM BDNF, NT3, or NT4 (prolonged exposure) and imaged after loading with the Ca(2+) indicator fura-2 AM. [Ca(2+)](i) responses to ACh, histamine, bradykinin, and caffeine and SOCE following SR Ca(2+) depletion were compared across cell groups. Force measurements were performed in human bronchial strips exposed to neurotrophins. Basal [Ca(2+)](i), peak responses to all agonists, SOCE, and force responses to ACh and histamine were all significantly enhanced by both acute and prolonged BDNF exposure (smaller effect of NT4) but decreased by NT3. Inhibition of the BDNF/NT4 receptor trkB by K252a prevented enhancement of [Ca(2+)](i) responses. ASM cells showed positive immunostaining for BDNF, NT3, NT4, trkB, and trkC (NT3 receptor). These novel data demonstrate that neurotrophins influence ASM [Ca(2+)](i) and force regulation and suggest a potential role for neurotrophins in airway diseases.  相似文献   

9.
Bleb formation is an early event of cellular damage observed in a variety of cell types upon hypoxia. Although we previously found that the [Ca(2+)](i) rise before bleb formation only at the same loci of HUVECs upon hypoxia (localized [Ca(2+)](i) rise), the mode of the [Ca(2+)](i) rise remains ill-defined. In order to clarify the mechanisms causing the localized [Ca(2+)](i) rise in hypoxia challenged HUVECs, we studied the effects of several Ca(2+) channel blockers or a Ca(2+) chelator, EGTA, which reduces extracellular Ca(2+) concentration on the hypoxia-induced localized [Ca(2+)](i) rise and bleb formation by employing a confocal laser scanning microscopy (CLSM). After the initiation of hypoxia, [Ca(2+)](i) rose gradually in a localized fashion up to 15 min, which was associated with bleb formation at the same loci. The maximal [Ca(2+)](i) rise was 435 +/- 84 nM at the loci of bleb formation. Ca(2+) channel blockers including Ni(2+) (non-specific, 1 mM), nifedipine (L type, 10 microM), nicardipine (L + T type, 10 microM), and cilnidipine (L + N type, 10 microM) did not inhibit either the localized [Ca(2+)](i) rise or bleb formation. Although both the localized [Ca(2+)](i) rise and bleb formation were inhibited by lowering extracellular Ca(2+) concentration below 100 nM, a diffuse [Ca(2+)](i) rise through the cytoplasm remained without bleb formation, which was inhibited by a phospholipase C (PLC) inhibitor, U73122. In conclusion, hypoxia causes both the Ca(2+) mobilization and the Ca(2+) influx in HUVECs and the Ca(2+) influx through unknown Ca(2+) channels is responsible for the localized [Ca(2+)](i) rise integral to bleb formation.  相似文献   

10.
The mechanism by which GnRH increases sperm-zona pellucida binding in humans was investigated in this study. We tested whether GnRH increases sperm-zona binding in Ca(2+)-free medium and in the presence of Ca(2+) channel antagonists. We also examined the GnRH effect on the intracellular free Ca(2+) concentration ([Ca(2+)](i)). Sperm treatment with GnRH increased sperm-zona binding 300% but only when Ca(2+) was present in the medium. In Ca(2+)-free medium or in the presence of 400 nM nifedipine, 80 microM diltiazem, or 50 microM verapamil, GnRH did not influence sperm-zona binding. GnRH increased the [Ca(2+)](i) in the sperm in a dose-dependent manner. The maximum effect was reached with 75 nM GnRH. The GnRH-induced increase in [Ca(2+)](i) was fast and transient, from a basal [Ca(2+)](i) of 413 +/- 22 nM to a peak value of 797 +/- 24 nM. The GnRH-induced increase in [Ca(2+)](i) was entirely due to a Ca(2+) influx from the extracellular medium because the increase in [Ca(2+)](i) was blocked by the Ca(2+) chelator EGTA and by the Ca(2+) channel antagonists nifedipine and diltiazem. These antagonists, however, were not able to inhibit the progesterone-activated Ca(2+) influx. On the contrary, T-type calcium channel antagonists pimozide and mibefradil did not affect GnRH-activated Ca(2+) influx but inhibited the progesterone-activated Ca(2+) influx. Finally, the GnRH-induced Ca(2+) influx was blocked by two specific GnRH antagonists, Ac-D-Nal(1)-Cl-D-Phe(2)-3-Pyr-D-Ala(3)-Arg(5)-D-Glu(AA)(6)-GnRH and Ac-(3,4)-dehydro-Pro(1),-p-fluoro-D-Phe(2), D-Trp(3,6)-GnRH. These results suggest that GnRH increases sperm-zona binding via an elevation of [Ca(2+)](i) through T-type, voltage-operated calcium channels.  相似文献   

11.
Progesterone is present at micromolar concentrations in the cumulus matrix, which surrounds mammalian oocytes. Exposure of human spermatozoa to a concentration gradient of progesterone (0-3 microM) to simulate approach to the oocyte induced a slowly developing increase in [Ca(2+)](i) upon which, in many cells, slow oscillations were superimposed. [Ca(2+)](i) oscillations often started at very low progesterone (<10 nm), and their frequency did not change during the subsequent rise in concentration. Oscillations also occurred, but in a much smaller proportion of cells, in response to stepped application of progesterone (3 microM). When progesterone was removed, [Ca(2+)](i) oscillations often persisted or quickly resumed. Superfusion with low-Ca(2+) bathing medium (no added Ca(2+)) did not prevent [Ca(2+)](i) oscillations, but they could be abolished by addition of EGTA or La(3+). Inhibitors of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases or inositol trisphosphate signaling had no effect on [Ca(2+)](i) oscillations, but pharmacological manipulation of ryanodine receptors affected both their frequency and amplitude. Staining of live spermatozoa with BODIPY FL-X ryanodine showed localization of ryanodine binding primarily to the caudal part of the head and mid-piece. [Ca(2+)](i) oscillations did not induce acrosome reaction, but in cells generating oscillations, the flagellar beat mode alternated in synchrony with the oscillation cycle. Flagellar bending and lateral movement of the sperm head during [Ca(2+)](i) peaks were markedly increased compared with during [Ca(2+)](i) troughs. This alternating pattern of activity is likely to facilitate zona penetration. These observations show that progesterone initiates unusual and complex store-mediated [Ca(2+)](i) signaling in human spermatozoa and identify a previously unrecognized effect of progesterone in regulating sperm "behavior" during fertilization.  相似文献   

12.
In hearts, intracellular acidosis disturbs contractile performance by decreasing myofibrillar Ca(2+) response, but contraction recovers at prolonged acidosis. We examined the mechanism and physiological implication of the contractile recovery during acidosis in rat ventricular myocytes. During the initial 4 min of acidosis, the twitch cell shortening decreased from 2.3 +/- 0.3% of diastolic length to 0.2 +/- 0.1% (means +/- SE, P < 0.05, n = 14), but in nine of these cells, contractile function spontaneously recovered to 1.5 +/- 0.3% at 10 min (P < 0.05 vs. that at 4 min). During the depression phase, both the diastolic intracellular Ca(2+) concentration ([Ca(2+)](i)) and Ca(2+) transient (CaT) amplitude increased, and the twitch [Ca(2+)](i) decline prolonged significantly (P < 0.05). In the cells that recovered, a further increase in CaT amplitude and a reacceleration of twitch [Ca(2+)](i) decline were observed. The increase in diastolic [Ca(2+)](i) was less extensive than the increase in the cells that did not recover (n = 5). Blockade of sarcoplasmic reticulum (SR) function by ryanodine (10 microM) and thapsigargin (1 microM) or a selective inhibitor of Ca(2+)-calmodulin kinase II, 2-[N- (2-hydroxyethyl)-N-(4-methoxybenzenesulfonyl)] amino-N-(4-chlorocinnamyl)-N-methyl benzylamine (1 microM) completely abolished the reacceleration of twitch [Ca(2+)](i) decline and almost eliminated the contractile recovery. We concluded that during prolonged acidosis, Ca(2+)-calmodulin kinase II-dependent reactivation of SR Ca(2+) uptake could increase SR Ca(2+) content and CaT amplitude. This recovery can compensate for the decreased myofibrillar Ca(2+) response, but may also cause Ca(2+) overload after returning to physiological pH(i).  相似文献   

13.
BACKGROUND: The effect of bradykinin on intracellular free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca(2+) dye. METHODS/RESULTS: Bradykinin (0.1 nM-1 microM) increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 0.5 nM. The [Ca(2+)](i) signal comprised an initial peak and a fast decay which returned to baseline in 2 min. Extracellular Ca(2+) removal inhibited the peak [Ca(2+)](i )signals by 35 +/- 3%. Bradykinin (1 nM) failed to increase [Ca(2+)](i) in the absence of extracellular Ca(2+ )after cells were pretreated with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor; 1 microM). Bradykinin (1 nM)-induced intracellular Ca(2+) release was nearly abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). The [Ca(2+)](i )increase induced by 1 nM bradykinin in Ca(2+)- free medium was abolished by 1 nM HOE 140 (a B2 bradykinin receptor antagonist) but was not altered by 100 nM Des-Arg-HOE 140 (a B1 bradykinin receptor antagonist). Pretreatment with 1 pM pertussis toxin for 5 h in Ca(2+) medium inhibited 30 +/- 3% of 1 nM bradykinin-induced peak [Ca(2+)](i) increase. CONCLUSIONS: Together, this study shows that bradykinin induced [Ca(2+)](i) increases in a concentration-dependent manner, by stimulating B2 bradykinin receptors leading to mobilization of Ca(2+) from the thapsigargin-sensitive stores in a manner dependent on inositol-1,4,5-trisphosphate, and also by inducing extracellular Ca(2+) influx. The bradykinin response was partly coupled to a pertussis toxin-sensitive G protein pathway.  相似文献   

14.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

15.
Generation of NO by nitric oxide synthase (NOS) is implicated in gamete interaction and fertilisation. Exposure of human spermatozoa to NO donors caused mobilisation of stored Ca(2+) by a mechanism that did not require activation of guanylate cyclase but was mimicked by S-nitroso-glutathione (GSNO; an S-nitrosylating agent). Application of dithiothreitol, to reduce protein -SNO groups, rapidly reversed the actions of NO and GSNO on [Ca(2+)](i). The effects of NO, GSNO and dithiothreitol on sperm protein S-nitrosylation, assessed using the biotin switch method, closely paralleled their actions on [Ca(2+)](i). Immunofluorescent staining revealed constitutive and inducible NOS in human oviduct and cumulus (the cellular layer investing the oocyte). 4,5-diaminofluorescein (DAF) staining demonstrated production of NO by these tissues. Incubation of human sperm with oviduct explants induced sperm protein S-nitrosylation resembling that induced by NO donors and GSNO. Progesterone (a product of cumulus cells) also mobilises stored Ca(2+) in human sperm. Pre-treatment of sperm with NO greatly enhanced the effect of progesterone on [Ca(2+)](i), resulting in a prolonged increase in flagellar excursion. We conclude that NO regulates mobilisation of stored Ca(2+) in human sperm by protein S-nitrosylation, that this action is synergistic with that of progesterone and that this synergism is potentially highly significant in gamete interactions leading to fertilisation.  相似文献   

16.
This study correlates whole organ measurements of intracellular calcium concentration ([Ca(2+)](i)) with hormone-induced (epinephrine, vasopressin) changes of liver functions (glucose release, K(+) balance and bile flow). [Ca(2+)](i) was measured in the isolated perfused rat liver using the sensor Fura-2 and applying liver surface fluorescence spectroscopy. The technique was improved by (i) minimizing biliary elimination of the sensor by employing a rat strain deficient in canalicular organic anion transport (TR(-) mutation) and (ii) by correcting for changes of interfering intrinsic organ fluorescence that was shown to depend on the oxidation-reduction state (NAD(P)H content) of the organ. Epinephrine (50 nM) elicits an instantaneous peak rise of [Ca(2+)](i) to approx. 400 nM, followed by a sustained elevation that depends on the presence of extracellular Ca(2+). The rise of [Ca(2+)](i) coincides with initiation of glucose release, transient K(+) uptake, and transient stimulation of bile flow. Vasopressin (2 nM) exerts qualitatively similar effects. The transient rise of bile flow is attributed to Ca(2+)-mediated contraction of the pericanalicular actin-myosin web of hepatocytes.  相似文献   

17.
The effect of the nitric oxide (NO) donor sodium nitroprusside (SNP) on both [Ca(2+)](i)and mechanical activity was studied in the rat isolated pulmonary artery (RPA). In freshly isolated myocytes loaded with 1 microM indo-lacetoxymethyl ester for 30 min, short (40-60 s) application of ATP (100 microM) or ET-1 (0.1 microM) induced 3-6 cyclic rises in [Ca(2+)](i)(Ca-oscillations) of decreasing amplitude. Preincubation of cells with SNP (10-250 microM) for 10 min had no effect on the resting [Ca(2+)](i)value, but progressively abolished the oscillations. A similar effect was obtained with 8-bromo-cGMP (100-500 microM). SNP (0.001-100 microM) concentration-dependently relaxed ATP (10 mM, n = 4) and ET-1 (0.1 microM, n = 4)-precontracted RPA. 1H-[1,2,4]oxadiazolol [4,3,-a]quinoxalin-1-one (ODQ, 10 microM), a potent inhibitor of the cytosolic guanylyl cyclase, fully reversed the effect of SNP on ATP-induced [Ca(2+)](i)oscillations as well as on ATP-precontracted RPA. In contrast, N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H8, 10 microM), a potent inhibitor of cGMP-dependent protein kinase (PKG), did not alter the effect of SNP. Caffeine (5 mM) induced only one transient [Ca(2+)](i)-increase (n = 24), the amplitude of which was altered neither by SNP nor by 8-bromo-cGMP. Our results show that the relaxing effect of NO in RPA is related, at least in part, to its action on the Ca-signalling pathway. NO interacts with inositol trisphosphate pathway without interacting with the ryanodine-sensitive receptor. Finally, the effect of NO involves an increase in cGMP but appears independent of activation of PKG.  相似文献   

18.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   

19.
The effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) and progesterone production were determined in granulosa cells from the two largest preovulatory follicles of laying hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye Fura-2. Thapsigargin stimulated a 4.6 +/- 0.2-fold increase in [Ca2+]i from a resting level of 55 +/- 6 nM up to 233 +/- 23 nM (n = 8) in 100% of the cells tested (n = 86). However, two different response patterns were observed. Dependent on the cell populations, a maximally effective concentration of thapsigargin (100 nM) stimulated either a rapid (within 16 +/- 2 s) transient increase in [Ca2+]i or a slowly (99 +/- 20 s) developing and sustained increase in [Ca2+]i. Both [Ca2+]i responses were concentration (0.001-1 microM)-dependent with an EC50 around 40 nM. The transient [Ca2+]i response occurred in the absence of extracellular Ca2+ and was unaffected by pretreating the cells with the Ca2+ channel blockers methoxyverapamil (50 microM) or lanthanum (1 mM). The plateau phase of the sustained [Ca2+]i response returned to resting level in the absence of extracellular Ca2+, but remained elevated in the presence of methoxyverapamil (50 microM) or lanthanum (1 mM). Despite its ability to cause transient or prolonged increases in [Ca2+]i, thapsigargin (0.001-1 microM) did not affect basal or luteinizing hormone-stimulated progesterone production by chicken granulosa cells.  相似文献   

20.
The clinical use of doxorubicin (DXR) is limited by cardiotoxicity partially due to interference with intracellular Ca(2+) homeostasis and involving the activation of the sarcoplasmic reticulum (SR) Ca(2+) release channels. It is known that docosahexaenoic acid (DHA) is able to potentiate the sensitivity of cancer cells to DXR. The aim of our study was to further evaluate the effects of DHA on [Ca(2+)](i) overload induced by DXR in adult rat ventricular cardiomyocytes in order to verify if DHA interferes with DXR-induced cardiotoxicity too. [Ca(2+)](i) was measured by microfluorimetry. Our data demonstrated that 100 microM DXR induced a statistically significant [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 560.2 +/- 49 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 551.1 +/- 35 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min significantly suppressed DXR [Ca(2+)](i)- increase in cells perfused with CaCl(2) Krebs solution (142.3 +/- 12 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (100.4 +/- 12 nM, n = 9, p < 0.01). Caffeine 10 mM significantly increased [Ca(2+)](i) in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 979.2 +/- 17.8 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 891.1 +/- 30 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min suppressed caffeine [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (174.2 +/- 28 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (161.9 +/- 34 nM, n = 9, p < 0.01). In conclusion, our results suggest that DHA is able to prevent acute modifications of calcium homeostasis induced by DXR probably interfering with SR Ca(2+) release channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号