首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA that encodes the peptide core of the secretory granule proteoglycan of the human promyelocytic leukemic cell line, HL-60, has been isolated and analyzed. When human genomic DNA was digested and probed under conditions of low stringency with a rat cDNA that encodes a Mr = 18,600 serine/glycine-rich proteoglycan peptide core in L2 yolk sac tumor cells (Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1321-1325) and basophilic leukemia-1 cells (Avraham, S., Stevens, R. L., Gartner, M. C., Austen, K. F., Lalley, P. A., and Weis, J. H. (1988) J. Biol. Chem. 263, 7292-7296), a number of DNA fragments were identified. A HL-60 cell-derived cDNA library was therefore screened under conditions of low stringency with the rat probe to identify and isolate a human homologue of this rat proteoglycan peptide core. Analysis of the resulting human cDNA clones indicated that the proteoglycan peptide core that is expressed in HL-60 cells is Mr = 17,600 and contains an 18-amino acid glycosaminoglycan attachment region that consists primarily of alternating serin and glycine. Northern blot analysis of total RNA probed with the human cDNA revealed that the major message for this proteoglycan peptide core in HL-60 cells is approximately 1.3 kilobase pairs in size. When a Southern blot of digested human genomic DNA was probed with the human cDNA, three bands of approximately 6, 9, and 12 kilobase pairs were detected. However, when the Southern blot was probed with the XmnI----3' fragment of this human cDNA, one prominent band was detected, indicating that a single gene encodes this protein in the human. Analysis of the DNA from human/mouse and human/hamster somatic cell hybrids probed with the human cDNA demonstrated that the gene that encodes this molecule resides on human chromosome 10. Because the proteoglycans that are present in the secretory granules of different types of rat and mouse mast cells possess small peptide cores that are rich in serine and glycine, we propose that this HL-60 cell-3 derived cDNA encodes the peptide core of the proteoglycan that is expressed in the secretory granules of this human promyelocytic cell.  相似文献   

2.
3.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

4.
It has been previously shown that a single gene is used to encode the peptide core of the extracellular proteoglycan of rat L2 yolk sac tumor cells and the intracellular proteoglycan of rat basophilic leukemia (RBL)-1 cells. In order to determine if the predicted amino acid sequences of these proteoglycans are identical as well as to isolate a full length cDNA encoding a rat secretory granule proteoglycan, a cDNA library was prepared from RBL-1 cells and screened with the 165-base pair 5'----XmnI fragment of pPG-1, a partial cDNA which encodes the rat L2 cell proteoglycan peptide core. Based on the consensus nucleotide sequence of two full length RBL-1 cell-derived cDNAs, the 5' untranslated region of the mRNA that is expressed in RBL-1 cells is shorter than that expressed in the rat L2 cells although the coding regions of the mRNAs from the two cell types are identical. These findings indicate that the targeting of proteoglycans to an intracellular or extracellular compartment is a cell-specific event which is independent of the translated peptide core. Since the RBL-1 cell and the rat L2 cell proteoglycans have different types of glycosaminoglycans bound to them, it can also be concluded that the selection of the type of glycosaminoglycan that will be synthesized onto a peptide core is a cell-specific event which is not exclusively dependent on the translated peptide core. When the predicted amino acid sequence of the RBL-1 cell proteoglycan peptide core was compared to the predicted sequence of the homologous human molecule from HL-60 cells, 48% of the amino acids were identical. The N terminus was the most highly conserved area of the molecule. This region of the peptide core, which precedes the serine-glycine repeat region, is likely to be of critical importance for the biosynthesis and/or function of these proteoglycans. Analysis of 10 different mouse/hamster somatic cell hybrid lines with a SspI----3' fragment of the rat L2 cell cDNA revealed that, as in the human, the gene that encodes the mouse analogue of this peptide core resides on chromosome 10.  相似文献   

5.
The structure, biosynthesis, and metabolism of proteoglycans in the HL-60 human promyelocytes were studied by metabolic labeling in culture with [35S]sulfate, [3H]glucosamine, [3H]serine, and [3H]leucine. These cells synthesize a single predominant species of intracellular proteoglycan with an approximate molecular weight of 100,000. The cells contain about 1 microgram of proteoglycan/million cells. The proteoglycan is turned over within the cells in two apparent pools with half-lives of about 0.6 and 27 h, respectively. The fast pool represents secretion into medium in an apparently intact form, whereas the slow pool represents intracellular degradation to free chondroitin sulfate chains and smaller fragments. The proteoglycan contains a protein core with an apparent Mr on gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of about 20,000-30,000. To the core protein are attached an average of six or seven chondroitin sulfate chains, each with an Mr of about 10,000. The chondroitin sulfate chains contain approximately 85% 4-sulfated and approximately 15% nonsulfated disaccharides. The chondroitin sulfate attachment region of the core protein is essentially resistant to trypsin and elastase, whereas the remainder of the protein core is readily degraded by proteases. The size of the chondroitin sulfate attachment region peptide generated by trypsin was estimated to be approximately 5 kDa. Based on the molecular size, distribution of amino acids, protease susceptibility, and the extent of O-glycosylation, we propose that the intracellular proteoglycan characterized in this study is the translation product of a proteoglycan gene reported to be present in these cells (Stevens, R.L., Avraham, S., Gartner, M.C., Bruns, G.A., Austen, K.E., and Weis, J.H. (1988) J. Biol. Chem. 263, 7287-7291).  相似文献   

6.
Heparan sulfate proteoglycan from the Engelbreth-Holm-Swarm mouse tumor was previously separated into two forms: a high density form (Form HD) and low density form (Form LD). In this study, the two forms were radiolabeled either metabolically with [35S]sulfate or [3H]serine or chemically with 125I. Pulse-chase experiments with [35S]sulfate showed no clear precursor-product relationship between the two forms. Analyses of the labeled proteoglycan samples with heparitinase and chondroitinase ABC indicated that Form LD is a large proteoglycan containing heparan sulfate chains attached to a single core molecule (Mr = 450,000), whereas Form HD is a mixture of small proteoglycans with four different size core molecules (Mr = 34,000, 29,000, 27,000, and 21,000), most, if not all, of which bear both heparan sulfate (Mr = 60,000) and chondroitin sulfate (Mr = 17,000) chains. Glycosaminoglycan-enriched fragments obtained from Form HD by V8 protease digestion were also shown to contain both heparitinase-susceptible chains and chondroitinase ABC-susceptible chains. Tryptic peptide maps of 125I-labeled Form HD and the glycosaminoglycan-enriched fragments derived therefrom were quite different from the corresponding maps for Form LD.  相似文献   

7.
Cultured human melanoma M21 cells were treated with diethylcarbamazine (DEC), an inhibitor of proteoglycan biosynthesis in rat chondrosarcoma cells, to examine the assembly and transport of a chondroitin sulfate proteoglycan to the plasma membrane. Pretreatment of melanoma cells at 37 degrees C for 15 min with increasing doses of DEC followed by a 60-min pulse with [35S]sulfate in the presence of DEC resulted in a dose-related inhibition of incorporation of [35S]sulfate into macromolecules. In cells incubated for 75 min with both 1 mM beta-D-xyloside and 15 mM DEC, synthesis and secretion of beta-D-xyloside-bound 35S-glycosaminoglycans were inhibited by more than 80% as compared to cells treated with beta-D-xyloside alone; this inhibition was reversible. As assessed by [3H]serine incorporation into protein, overall protein synthesis was not substantially inhibited by DEC treatment. Detergent lysates from [35S]methionine-labeled melanoma cells were incubated with a monoclonal antibody (9.2.27) that specifically recognizes the peptide core of the melanoma proteoglycan. As assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoprecipitate, a 240,000 Mr endoglycosidase H (Endo-H)-sensitive intermediate was the only form of the proteoglycan present inside the cells when the cultures were treated for 60-120 min with 10-15 mM DEC. When the melanoma cells were incubated for 10 min with 15 mM DEC and 100 mu Ci/ml of [35S]methionine, washed, and then chased for 15 min to 4 h in radioactive-free medium, the 240,000 Mr Endo-H-sensitive intermediate was slowly converted to a 250,000 Endo-H-resistant intermediate but not to a mature proteoglycan molecule that possessed chondroitin sulfate glycosaminoglycans. SDS-PAGE analysis of cell surface immunoprecipitates revealed that only a small amount of the 250,000 Mr intermediate was transported to the plasma membrane within 5 h of incubation in the presence of DEC. Proteoglycan synthesis was also inhibited when the melanoma cells were incubated for 60-120 min with ammonium chloride, but unlike DEC-treated cells the majority of the synthesized peptide core was converted to a 245,000 Mr Endo-H-resistant intermediate that was detected on the cell surface. Light and electron microscopic analysis of DEC-treated melanoma cells revealed large vacuoles and a distended Golgi and endoplasmic reticulum. Ammonium chloride-treated cells contained fewer vacuoles than DEC-treated cells but more vacuoles than normal cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Extraction of stage 22-23 chick embryo limb buds that had been metabolically labeled with [35S]sulfate yielded heparan sulfate proteoglycan, small chondroitin sulfate proteoglycan, and large chondroitin sulfate proteoglycan (designated PG-M). PG-M constituted over 60% of the total macromolecular [35S]sulfates. It was larger in hydrodynamic size, richer in protein, and contained fewer chondroitin sulfate chains as compared to the predominant proteoglycan (PG-H, Mr congruent to 1.5 X 10(6)) of chick embryo cartilage. The chondroitin sulfate chains were notable for their large size (Mr greater than or equal to 60,000) and high content of nonsulfated chondroitin units (about 20% of the total hexosamine). Hexosamine-containing chains corresponding in size to N-linked and O-linked oligosaccharides were also present. The core protein was rich in serine, glutamic acid (glutamine), and glycine which together comprised about 38% of the total amino acids. Following chondroitinase AC II (or ABC) digestion, core molecules were obtained which migrated on sodium dodecyl sulfate gel electrophoresis as a doublet of bands with approximately Mr = 550,000 (major) and 500,000, respectively. The Mr = 550,000 core glycoprotein was structurally different from the core glycoprotein (Mr congruent to 400,000) of PG-H, as ascertained by tryptic peptide mapping and immunochemical criteria. Immunofluorescent localization of PG-M showed that the intensity of PG-M staining progressively became higher in the core mesenchyme region than in the peripheral loose mesenchyme, closely following the condensation of mesenchymal cells. Since the cell condensation process has been shown to begin with the increase of fibronectin and type I collagen concentration, the similar change in PG-M distribution suggests that PG-M plays an important role in the cell condensation process by means of its interaction with fibronectin and type I collagen.  相似文献   

9.
The complete nucleotide sequence of the 16.7-kb human gene that encodes the peptide core (serglycin) of a secretory granule proteoglycan was determined, thus representing the first proteoglycan peptide core gene to be sequenced in its entirety. The exons, intron 1, and intron 2 comprised 7, 53, and 40% of the gene, respectively. Nineteen Alu-repetitive DNA sequences were interspersed in the gene, accounting for 28% of the total nucleotides in intron 1 and 40% of the nucleotides in intron 2. The nucleotide sequence was then used in an examination of the methylation pattern of the human serglycin gene in human promyelocytic leukemia HL-60 cells that contain serglycin mRNA and in T-lymphoblast Molt-4 cells that do not. With polymerase chain reaction methodology, 13 DNA probes of 250-880 base pairs in length were generated that corresponded to unique, non-Alu sequences spaced throughout the entire human serglycin gene. When blots containing genomic DNA digested with HpaII or MspI were examined with these genomic probes, it was discovered that the 5'-flanking region and intron 1 of the serglycin gene in HL-60 cells were both substantially less methylated than intron 2. In contrast, the entire serglycin gene in Molt-4 cells was highly methylated. Because hypomethylated genes generally are transcribed more efficiently than hypermethylated genes, the high level of serglycin mRNA in HL-60 cells probably is a consequence of the low level of methylation of intron 1 and the 5'-flanking region of the serglycin gene in these cells.  相似文献   

10.
Chondroitin sulfate E proteoglycan was extracted in the presence of protease inhibitors from 6 X 10(9) mouse bone marrow-derived, interleukin 3-dependent mast cells, of which 3 X 10(7) had been biosynthetically labeled with [35S]sulfate or [3H]glycine. Chondroitin sulfate E proteoglycan was purified to apparent homogeneity by density-gradient centrifugation, differential molecular weight dialysis, DEAE-52 ion exchange chromatography, and Sepharose CL-4B gel filtration chromatography. Chondroitin sulfate E proteoglycan, radiolabeled with [3H]glycine or [35S]sulfate, filtered as a single peak of radioactivity on Sepharose CL-4B with a Kav of 0.41. When purified [3H]glycine-labeled proteoglycan was digested with chondroitinase ABC and subjected to gel filtration, all of the radioactivity was shifted to a lower molecular weight. As assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis the Mr of the peptide core obtained by chondroitinase ABC treatment was approximately 10,000. The purified proteoglycan was resistant to degradation by collagenase, clostripain, trypsin, chymotrypsin, elastase, chymopapain, V8 protease, proteinase K, and Pronase, as assessed by gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the core peptide of the intact proteoglycan revealed that glycine, serine, and glutamic acid/glutamine accounted for 70% of the total amino acids and were present in a molar ratio of 4.3/1.6/1.0. When analyzed for neutral hexose content by gas-liquid chromatography, the proteoglycan contained approximately 2% of its weight as mannose, fucose, galactose, and other sugars, indicating that oligosaccharides were linked to the peptide core. The mouse bone marrow-derived mast cell chondroitin sulfate E proteoglycan, like the rat serosal mast cell heparin proteoglycan, is markedly protease resistant, has highly sulfated glycosaminoglycans, and contains a peptide core that is rich in serine and glycine. These characteristics of the mast cell class of intracellular proteoglycans may contribute to their function in stimulus-induced granule secretion as well as in mediator storage, including retention of cationic neutral proteases.  相似文献   

11.
The yolk sac carcinoma cell line L2 secretes a chondroitin/dermatan sulfate proteoglycan that has an Mr 10,000 core protein and carries an average of 14 glycosaminoglycan chains. The amino acid sequence of the mature core protein has been determined from cloned cDNA (Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1321-1325). From additional cDNA sequences described in this report we have identified the prepro core protein precursor of the yolk sac carcinoma chondroitin/dermatan sulfate proteoglycan. From the amino acid sequence of the core protein precursor can be deduced the protein processing events in the biosynthesis of the proteoglycan. The amino acid sequence shows that the 104-amino acid mature core protein is processed from a 179-amino acid prepro core protein precursor which, in addition to the mature core protein, contains a 26-amino acid signal peptide as well as a 49-amino acid propeptide. The molecular weight of the prepro core protein predicted from the cDNA sequence (Mr = 18,600) was in good agreement with the molecular weight of the in vitro translation product (Mr = 19,000) of hybrid-selected mRNA. Accordingly, we have designated the proteoglycan core protein PG19. Further analysis of the PG19 mRNA by RNA sequencing confirmed the identification of the core protein translation initiation codon by revealing stop codons in all three reading frames of the upstream mRNA sequence. Primer extension analyses demonstrated that the 5' untranslated sequence of the proteoglycan mRNA is approximately 220 nucleotides in length, which, combined with the length of cDNA clones, accounts for the entire length of the coding sequence of PG19 mRNA from L2 cells. The cDNA sequences presented here establish the complete protein sequence of PG19 and provide evidence of polypeptide processing during the biosynthesis of the proteoglycan core protein.  相似文献   

12.
The palmitoylation site of the membrane glycoprotein E1 of Semliki Forest virus (SFV) has been identified by chemical analysis of an acylpeptide. 3H-Palmitoylated E1 isolated from SFV grown in baby hamster kidney cells was digested with chymotrypsin and the resulting peptides subjected to high performance liquid chromatography on a wide-pore column. The 3H-acylated peptide fraction peaked at above 60% 2-propanol in the eluent, indicating its hydrophobic character. Polyacrylamide gel electrophoresis analysis revealed a molecular weight of about Mr = 6000 for the radiolabeled peptide. Manual sequencing of this material by the 4-N,N'-dimethylaminoazobenzene-4'-isothiocyanate/phenylisothiocyanate procedure on solid phase revealed the amino-terminal sequence Ala-Ala-Ser-His-Ser-Asn-Val-Val-Phe-Pro. The same peptide also labels with [35S]cysteine. Comparison with the deduced amino acid sequence of E1 revealed that the palmitoylated peptide contains at least 43 amino acid residues, and thus includes the membrane spanning region down to the only cysteine residue five positions up from the carboxyl terminus of E1. Since [3H]palmitic acid was cleaved from E1 with thiol reagents, and since the peptide labels with [14C]iodoacetamide only after the release of fatty acids by hydroxylamine treatment, cysteine in position 433 represents the palmitoylation site in SFV E1.  相似文献   

13.
14.
Receptors for the chemotactic peptide fMet-Leu-Phe (fMet, N-formylmethionine) are present in membranes of myeloid differentiated human leukemia (HL-60) cells and stimulate phospholipase C via a pertussis-toxin-sensitive guanine-nucleotide-binding regulatory protein(s) [G-protein(s)]. We have developed methods for the assessment of formyl-peptide-receptor-stimulated binding of radiolabeled guanosine 5'-[gamma-thio]triphosphate ([35S]GTP[S]) to native HL-60 membranes. Agonist stimulation of [35S]GTP[S] association with the membrane was minimal (less than or equal to 20%) when GTP[S] was the sole nucleotide present in the incubation medium. In contrast, receptor activation led to a marked (up to sixfold) stimulation of [35S]GTP[S] binding when GDP or GTP were present in high (greater than 100-fold) excess of [35S]GTP[S]. The increase in [35S]GTP[S] binding caused by the chemotactic agonist was strictly dependent on the presence of Mg2+ and was significantly increased by Na+. Agonist-independent binding of [35S]GTP[S] and the increase due to the chemotactic agonist were markedly attenuated by both pertussis and cholera toxin. Comparison of the number of chemotactic-peptide-sensitive [35S]GTP[S]-binding sites to the number of chemotactic peptide receptors present in HL-60 membranes provided direct evidence that a single formyl-peptide receptor is capable of catalyzing the binding of [35S]GTP[S] to, and thus the activation of, multiple (up to 20) G-proteins in native plasma membranes.  相似文献   

15.
Pancreatic polypeptide is a 36-amino acid peptide which inhibits pancreatic exocrine function. We have previously determined from the nucleotide sequence of a cDNA that pancreatic polypeptide is derived from a 95-amino acid precursor, prepropancreatic polypeptide. Pulse-chase studies have suggested that the precursor is cleaved to produce three peptides: pancreatic polypeptide, an icosapeptide, and a smaller peptide. In the present study, we have used the cloned cDNA as a hybridization probe to isolate the pancreatic polypeptide gene from a human bacteriophage genomic library. The nucleotide sequence of 2.8 kilobases of DNA representing the entire human pancreatic polypeptide gene was determined. The gene contains four exons and three introns. Exon 1 encodes the 5'-untranslated region of the mRNA, exon 2 encodes the signal sequence and the sequence of pancreatic polypeptide, exon 3 encodes the icosapeptide, and exon 4 encodes a carboxyl-terminal heptapeptide and the 3'-untranslated region of the mRNA. By Southern blot analysis, the gene detected in a pancreatic polypeptide-producing islet cell tumor was indistinguishable from that in normal human leukocytes. The structure of the human pancreatic polypeptide gene is consistent with the hypothesis that prepropancreatic polypeptide generates three distinct peptides, each encoded by a separate exon. Increased expression of pancreatic polypeptide in the islet cell tumor does not appear to be correlated with major alterations in pancreatic polypeptide gene structure.  相似文献   

16.
17.
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing.  相似文献   

18.
A differentiated population of cells with metachromatically staining granules and surface IgE receptors was obtained from mouse bone marrow cultured for 2 weeks in the presence of conditioned medium derived from concanavalin A-stimulated splenocytes. The cells were found to incorporate large amounts of [35S]sulfate into an intracellular 35S-labeled proteoglycan of Mr approximately 200,000 containing a maximum of seven glycosaminoglycan side chains (Mr = 25,000). After chondroitinase ABC treatment of density gradient-purified [3H] serine-labeled proteoglycan, the resulting core was Mr approximately 26,000 as assessed by gel filtration. Two-dimensional cellulose acetate electrophoresis of beta-eliminated 35S-labeled glycosaminoglycan revealed a single type of glycosaminoglycan that migrated at the position of oversulfated chondroitin sulfate E from squid cartilage. Chondroitinase ABC degradation of the 35S-labeled glycosaminoglycan yielded two cleavage products in approximately equal molar amounts which co-migrated in both descending paper chromatography and high voltage paper electrophoresis with a monosulfated disaccharide, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose, and a disulfated disaccharide, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-6-di-O-sulfo-D-galactose. The release of some free [35S]sulfate from the oversulfated disaccharide with either chondro-4-sulfatase or chondro-6-sulfatase and the complete desulfation by their combined action established that the oversulfated disaccharide contained N-acetylgalactosamine-4,6-disulfate. The 35S]labeled proteoglycan of these unique IgE receptor-bearing and histamine-containing cells, therefore, is composed of chondroitin sulfate E rather than heparin glycosaminoglycan, and thus is the first identification of such an intracellular localized proteoglycan in a mammalian cell.  相似文献   

19.
Myeloperoxidase precursors incorporate heme   总被引:1,自引:0,他引:1  
Myeloperoxidase of neutrophil granulocytes is synthesized as a larger molecular weight precursor, which is processed to yield mature polypeptides with molecular weights of 62,000 and 12,000. We have investigated the incorporation of heme into myeloperoxidase of the human promyelocytic HL-60 cell line labeled with 5-amino[14C]levulinic acid. Myeloperoxidase was isolated by immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and radiolabeled myeloperoxidase was visualized by fluorography. A 3-h pulse labeling with 5-amino[14C]levulinic acid resulted in labeling of the Mr 90,000 and Mr 82,000 precursor polypeptides. During subsequent chase of the label, conversion to mature radioactive heavy Mr 62,000 subunit was observed but no radioactivity was associated with the mature small Mr 12,000 subunit. Peptide mapping after proteolytic cleavage with V8 proteinase showed that 5-amino[14C]levulinic acid was associated with a single Mr 23,000 polypeptide while multiple radioactive fragments were visible after proteolytic cleavage of myeloperoxidase biosynthetically labeled with [14C]leucine. That 5-amino[14C]levulinic acid was specifically incorporated into heme of myeloperoxidase was also demonstrated by dissociation under reducing conditions which yielded 14C-labeled heme as indicated by reversed phase high pressure liquid chromatography. The ionophore monensin and the base chloroquine, which block processing of myeloperoxidase, did not affect the incorporation of 5-amino[14C]levulinic acid, further supporting the notion that the incorporation of heme is independent of final processing of the polypeptide. Our data establish that heme is incorporated into myeloperoxidase already at the level of the precursor and that processing yields a heme-containing heavy subunit and a heme-free small subunit.  相似文献   

20.
Using human myeloperoxidase cDNA as a probe, a chromosomal gene related to myeloperoxidase was isolated from a human gene library. Comparison of the amino acid sequence deduced from the nucleotide sequence of the cloned gene with that of human eosinophil peroxidase purified from buffy coats has indicated that the isolated gene is the chromosomal gene for human eosinophil peroxidase. Like human myeloperoxidase gene, human eosinophil peroxidase gene consists of 12 exons and 11 introns spanning about 12 kilobases. The gene can code for a protein of 715 amino acids with a calculated Mr of 81,036. The heavy chain and the light chain of eosinophil peroxidase were located on the COOH and NH2 terminus of the protein, respectively. The coding sequences of eosinophil peroxidase and myeloperoxidase show homologies of 72.4% at the nucleotide and 69.8% at the amino acid level, while little homology was found in the 5'-flanking region. Northern hybridization and S1 mapping analysis of RNA from human leukemic cells have indicated that the eosinophil peroxidase gene is expressed in the eosinophilic subline of human HL-60 cells but not in the neutrophilic subline or in parental HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号