首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host tropism of hepatitis C virus (HCV) is limited to human and chimpanzee. HCV infection has never been fully understood because there are few conventional models for HCV infection. Human induced pluripotent stem cell-derived hepatocyte-like (iPS-Hep) cells have been expected to use for drug discovery to predict therapeutic activities and side effects of compounds during the drug discovery process. However, the suitability of iPS-Hep cells as an experimental model for HCV research is not known. Here, we investigated the entry and genomic replication of HCV in iPS-Hep cells by using HCV pseudotype virus (HCVpv) and HCV subgenomic replicons, respectively. We showed that iPS-Hep cells, but not iPS cells, were susceptible to infection with HCVpv. The iPS-Hep cells expressed HCV receptors, including CD81, scavenger receptor class B type I (SR-BI), claudin-1, and occludin; in contrast, the iPS cells showed no expression of SR-BI or claudin-1. HCV RNA genome replication occurred in the iPS-Hep cells. Anti-CD81 antibody, an inhibitor of HCV entry, and interferon, an inhibitor of HCV genomic replication, dose-dependently attenuated HCVpv entry and HCV subgenomic replication in iPS-Hep cells, respectively. These findings suggest that iPS-Hep cells are an appropriate model for HCV infection.  相似文献   

2.
Expression of the acute phase protein serum amyloid A (SAA) is dependent on the release of the pro-inflammatory cytokines IL-1, IL-6 and TNF-α during infection and inflammation. Hepatitis C virus (HCV) upregulates SAA-inducing cytokines. In line with this, a segment of chronically infected individuals display increased circulating levels of SAA. SAA has even been proposed to be a potential biomarker to evaluate treatment efficiency and the course of disease. SAA possesses antiviral activity against HCV via direct interaction with the viral particle, but might also divert infectivity through its function as an apolipoprotein. On the other hand, SAA shares inflammatory and angiogenic activity with chemotactic cytokines by activating the G protein-coupled receptor, formyl peptide receptor 2. These latter properties might promote chronic inflammation and hepatic injury. Indeed, up to 80 % of infected individuals develop chronic disease because they cannot completely clear the infection, due to diversion of the immune response. In this review, we summarize the interconnection between SAA and cytokines in the context of HCV infection and highlight the dual role SAA could play in this disease. Nevertheless, more research is needed to establish whether the balance between those opposing activities can be tilted in favor of the host defense.  相似文献   

3.
CD81 has been described as a putative receptor for hepatitis C virus (HCV); however, its role in HCV cell entry has not been characterized due to the lack of an efficient cell culture system. We have examined the role of CD81 in HCV glycoprotein-dependent entry by using a recently developed retroviral pseudotyping system. Human immunodeficiency virus (HIV) pseudotypes bearing HCV E1E2 glycoproteins show a restricted tropism for human liver cell lines. Although all of the permissive cell lines express CD81, CD81 expression alone is not sufficient to allow viral entry. CD81 is required for HIV-HCV pseudotype infection since (i) a monoclonal antibody specific for CD81 inhibited infection of susceptible target cells and (ii) silencing of CD81 expression in Huh-7.5 hepatoma cells by small interfering RNAs inhibited HIV-HCV pseudotype infection. Furthermore, expression of CD81 in human liver cells that were previously resistant to infection, HepG2 and HH29, conferred permissivity of HCV pseudotype infection. The characterization of chimeric CD9/CD81 molecules confirmed that the large extracellular loop of CD81 is a determinant for viral entry. These data suggest a functional role for CD81 as a coreceptor for HCV glycoprotein-dependent viral cell entry.  相似文献   

4.
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side effects and marginal efficacy, more effective antivirals are crucially needed. Although HCV protease inhibitors were just approved by the US Food and Drug Administration (FDA), optimal HCV therapy, analogous to HIV therapy, will probably require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a potential multifaceted target for antiviral intervention; however, to date, FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection, as silencing or antibody-mediated blocking of NPC1L1 impairs cell culture-derived HCV (HCVcc) infection initiation. In addition, the clinically available FDA-approved NPC1L1 antagonist ezetimibe potently blocks HCV uptake in vitro via a virion cholesterol-dependent step before virion-cell membrane fusion. Moreover, ezetimibe inhibits infection by all major HCV genotypes in vitro and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor but also discovered a new antiviral target and potential therapeutic agent.  相似文献   

5.
Hepatitis C virus (HCV) is an important human pathogen associated with chronic liver disease. Recently, based on a genotype 2a isolate, tissue culture systems supporting complete replication and infectious virus production have been developed. In this study, we used cell culture-produced infectious HCV to analyze the viral entry pathway into Huh-7.5 cells. Bafilomycin A1 and concanamycin A, inhibitors of vacuolar ATPases, prevented HCV entry when they were present prior to infection and had minimal effect on downstream replication events. HCV entry therefore appears to be pH dependent, requiring an acidified intracellular compartment. For many other enveloped viruses, acidic pH triggers an irreversible conformational change, which promotes virion-endosomal membrane fusion. Such viruses are often inactivated by low pH. In the case of HCV, exposure of virions to acidic pH followed by return to neutral pH did not affect their infectivity. This parallels the observation made for the related pestivirus bovine viral diarrhea virus. Low pH could activate the entry of cell surface-bound HCV but only after prolonged incubation at 37 degrees C. This suggests that there are rate-limiting, postbinding events that are needed to render HCV competent for low-pH-triggered entry. Such events may involve interaction with a cellular coreceptor or other factors but do not require cathepsins B and L, late endosomal proteases that activate Ebola virus and reovirus for entry.  相似文献   

6.
Hepatitis C virus (HCV) is a member of the Flaviviridae family and causes acute and chronic hepatitis. Chronic HCV infection may result in severe liver damage including liver cirrhosis and hepatocellular carcinoma. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. This step is an important determinant of tissue tropism and pathogenesis; it thus represents a major target for antiviral host cell responses, such as antibody-mediated virus neutralization. Following the development of novel cell culture models for HCV infection our understanding of the HCV entry process and mechanisms of virus neutralization has been markedly advanced. In this review we summarize recent developments in the molecular biology of viral entry and its impact on pathogenesis of HCV infection, development of novel preventive and therapeutic antiviral strategies.  相似文献   

7.
Hepatitis C virus (HCV) is a member of the Flaviviridae family and causes acute and chronic hepatitis. Chronic HCV infection may result in severe liver damage including liver cirrhosis and hepatocellular carcinoma. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. This step is an important determinant of tissue tropism and pathogenesis; it thus represents a major target for antiviral host cell responses, such as antibody-mediated virus neutralization. Following the development of novel cell culture models for HCV infection our understanding of the HCV entry process and mechanisms of virus neutralization has been markedly advanced. In this review we summarize recent developments in the molecular biology of viral entry and its impact on pathogenesis of HCV infection, development of novel preventive and therapeutic antiviral strategies.  相似文献   

8.
Hepatitis C virus (HCV) is a member of the Flaviviridae family and causes acute and chronic hepatitis. Chronic HCV infection may result in severe liver damage including liver cirrhosis and hepatocellular carcinoma. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. This step is an important determinant of tissue tropism and pathogenesis; it thus represents a major target for antiviral host cell responses, such as antibody-mediated virus neutralization. Following the development of novel cell culture models for HCV infection our understanding of the HCV entry process and mechanisms of virus neutralization has been markedly advanced. In this review we summarize recent developments in the molecular biology of viral entry and its impact on pathogenesis of HCV infection, development of novel preventive and therapeutic antiviral strategies.   相似文献   

9.
Two to three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Here, we have identified a partner of CD81, EWI-2wint, which is expressed in several cell lines but not in hepatocytes. Ectopic expression of EWI-2wint in a hepatoma cell line susceptible to HCV infection blocked viral entry by inhibiting the interaction between the HCV envelope glycoproteins and CD81. This finding suggests that, in addition to the presence of specific entry factors in the hepatocytes, the lack of a specific inhibitor can contribute to the hepatotropism of HCV. This is the first example of a pathogen gaining entry into host cells that lack a specific inhibitory factor.  相似文献   

10.
Superinfection exclusion is the ability of an established virus infection to interfere with infection by a second virus. In this study, we found that Huh-7.5 cells acutely infected with hepatitis C virus (HCV) genotype 2a (chimeric strain J6/JFH) and cells harboring HCV genotype 1a, 1b, or 2a full-length or subgenomic replicons were resistant to infection with cell culture-produced HCV (HCVcc). Replicon-containing cells became permissive for HCVcc infection after treatment with an HCV-specific protease inhibitor. With the exception of cells harboring a J6/JFH-FLneo replicon, infected or replicon-containing cells were permissive for HCV pseudoparticle (HCVpp) entry, demonstrating a postentry superinfection block downstream of primary translation. The surprising resistance of J6/JFH-FLneo replicon-containing cells to HCVpp infection suggested a defect in virus entry. This block was due to reduced expression of the HCV coreceptor CD81. Further analyses indicated that J6/JFH may be toxic for cells expressing high levels of CD81, thus selecting for a CD81(low) population. CD81 down regulation was not observed in acutely infected cells, suggesting that this may not be a general mechanism of HCV superinfection exclusion. Thus, HCV establishes superinfection exclusion at a postentry step, and this effect is reversible by treatment of infected cells with antiviral compounds.  相似文献   

11.
Jiang J  Cun W  Wu X  Shi Q  Tang H  Luo G 《Journal of virology》2012,86(13):7256-7267
Viruses are known to use virally encoded envelope proteins for cell attachment, which is the very first step of virus infection. In the present study, we have obtained substantial evidence demonstrating that hepatitis C virus (HCV) uses the cellular protein apolipoprotein E (apoE) for its attachment to cells. An apoE-specific monoclonal antibody was able to efficiently block HCV attachment to the hepatoma cell line Huh-7.5 as well as primary human hepatocytes. After HCV bound to cells, however, anti-apoE antibody was unable to inhibit virus infection. Conversely, the HCV E2-specific monoclonal antibody CBH5 did not affect HCV attachment but potently inhibited HCV entry. Similarly, small interfering RNA-mediated knockdown of the key HCV receptor/coreceptor molecules CD81, claudin-1, low-density lipoprotein receptor (LDLr), occludin, and SR-BI did not affect HCV attachment but efficiently suppressed HCV infection, suggesting their important roles in HCV infection at postattachment steps. Strikingly, removal of heparan sulfate from the cell surface by treatment with heparinase blocked HCV attachment. Likewise, substitutions of the positively charged amino acids with neutral or negatively charged residues in the receptor-binding region of apoE resulted in a reduction of apoE-mediating HCV infection. More importantly, mutations of the arginine and lysine to alanine or glutamic acid in the receptor-binding region ablated the heparin-binding activity of apoE, as determined by an in vitro heparin pulldown assay. HCV attachment could also be inhibited by a synthetic peptide derived from the apoE receptor-binding region. Collectively, these findings demonstrate that apoE mediates HCV attachment through specific interactions with cell surface heparan sulfate.  相似文献   

12.
13.
Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81-claudin-1 co-receptor associations and viral glycoprotein-dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.  相似文献   

14.
The host–virus interactions leading to cell infection with hepatitis C virus (HCV) are not fully understood. The tetraspanin CD-81 and human scavenger receptor SR-BI/Cla1 are major receptors mediating virus cell entry. However, HCV in patients' sera is associated with lipoproteins and infectious potential of the virus depends on lipoproteins associated to virus particles. We show here that lipoprotein lipase (LPL), targeting triglyceride-rich lipoproteins (TRL) to the liver, mediates binding and internalization of HCV to different types of cells, acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate proteoglycans (HSPG). The dimeric structure and catalytic activity of LPL are required for LPL-mediated HCV uptake to cells. Unexpectedly, exogenous LPL significantly inhibits HCVcc infection in vitro . This effect is prevented by anti-LPL antibodies and by tetrahydrolipstatin (THL) a specific inhibitor of LPL enzymatic activity. In addition, we show that antibodies directed to apolipoprotein B (ApoB)-containing lipoproteins efficiently inhibits HCVcc infection. Our findings suggest that LPL mediates HCV cell entry by a mechanism similar to hepatic clearance of TRL from the circulation, promoting a non-productive virus uptake. These data provide new insight into mechanisms of HCV cell entry and suggest that LPL could modulate HCV infectivity in vivo .  相似文献   

15.
The relevance of claudin-6 and claudin-9 in hepatitis C virus (HCV) entry remains elusive. We produced claudin-6- or claudin-9-specific monoclonal antibodies that inhibit HCV entry into nonhepatic cells expressing exogenous claudin-6 or claudin-9. These antibodies had no effect on HCV infection of hepatoma cells or primary hepatocytes. Thus, although claudin-6 and claudin-9 can serve as entry factors in cell lines, HCV infection into human hepatocytes is not dependent on claudin-6 and claudin-9.  相似文献   

16.
We screened for hepatitis C virus (HCV) inhibitors using the JFH-1 viral culture system and found that selective estrogen receptor modulators (SERMs), such as tamoxifen, clomifene, raloxifene, and other estrogen receptor α (ERα) antagonists, inhibited HCV infection. Treatment with SERMs for the first 2 h and treatment 2–24 h after viral inoculation reduced the production of HCV RNA. Treating persistently JFH-1 infected cells with SERMs resulted in a preferential inhibition of extracellular HCV RNA compared to intracellular HCV RNA. When we treated two subgenomic replicon cells, which harbor HCV genome genotype 2a (JFH-1) or genotype 1b, SERMs reduced HCV genome copies and viral protein NS5A. SERMs inhibited the entry of HCV pseudo-particle (HCVpp) genotypes 1a, 1b, 2a, 2b and 4 but did not inhibit vesicular stomatitis virus (VSV) entry. Further experiment using HCVpp indicated that tamoxifen affected both viral binding to cell and post-binding events including endocytosis. Taken together, SERMs seemed to target multiple steps of HCV viral life cycle: attachment, entry, replication, and post replication events. SERMs may be potential candidates for the treatment of HCV infection.  相似文献   

17.
The PI3K-AKT signaling pathway plays an important role in cell growth and metabolism. Here we report that hepatitis C virus (HCV) transiently activates the PI3K-AKT pathway. This activation was observed as early as 15 min postinfection, peaked by 30 min, and became undetectable at 24 h postinfection. The activation of AKT could also be mediated by UV-inactivated HCV, HCV pseudoparticle, and the ectodomain of the HCV E2 envelope protein. Because antibodies directed against CD81 and claudin-1, but not antibodies directed against scavenger receptor class B type I or occludin, could also activate AKT, the interaction between HCV E2 and its two co-receptors CD81 and claudin-1 probably triggered the activation of AKT. This activation of AKT by HCV was important for HCV infectivity, because the silencing of AKT by siRNA or the treatment of cells with its inhibitors or with the inhibitor of its upstream regulator PI3K significantly inhibited HCV infection, whereas the expression of constitutively active AKT enhanced HCV infection. The PI3K-AKT pathway is probably involved in HCV entry, because the inhibition of this pathway could inhibit the entry of HCV pseudoparticle but not the VSV pseudoparticle into cells. Furthermore, the treatment of cells with the AKT inhibitor AKT-V prior to HCV infection inhibited HCV infection, whereas the treatment after HCV infection had no obvious effect. Taken together, our studies indicated that HCV transiently activates the PI3K-AKT pathway to facilitate its entry. These results provide important information for understanding HCV replication and pathogenesis and raised the possibility of targeting this cellular pathway to treat HCV patients.  相似文献   

18.
19.
While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR.  相似文献   

20.
Tong Y  Zhu Y  Xia X  Liu Y  Feng Y  Hua X  Chen Z  Ding H  Gao L  Wang Y  Feitelson MA  Zhao P  Qi ZT 《Journal of virology》2011,85(6):2793-2802
Hepatitis C virus (HCV)-related research has been hampered by the lack of appropriate small-animal models. It has been reported that tree shrews, or tupaias (Tupaia belangeri), can be infected with serum-derived HCV. However, these reports do not firmly establish the tupaia as a reliable model of HCV infection. Human CD81, scavenger receptor class B type I (SR-BI), claudin 1 (CLDN1), and occludin (OCLN) are considered essential receptors or coreceptors for HCV cell entry. In the present study, the roles of these tupaia orthologs in HCV infection were assessed. Both CD81 and SR-BI of tupaia were found to be able to bind with HCV envelope protein 2 (E2). In comparison with human CD81, tupaia CD81 exhibited stronger binding activity with E2 and increased HCV pseudoparticle (HCVpp) cell entry 2-fold. The 293T cells transfected with tupaia CLDN1 became susceptible to HCVpp infection. Moreover, simultaneous transfection of the four tupaia factors into mouse NIH 3T3 cells made the cells susceptible to HCVpp infection. HCVpp of diverse genotypes were able to infect primary tupaia hepatocytes (PTHs), and this infection could be blocked by either anti-CD81 or anti-SR-BI. PTHs could be infected by cell culture-produced HCV (HCVcc) and did produce infectious progeny virus in culture supernatant. These findings indicate that PTHs possess all of the essential factors required for HCV entry and support the complete HCV infection cycle. This highlights both the mechanisms of susceptibility of tupaia to HCV infection and the possibility of using tupaia as a promising small-animal model in HCV study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号