首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Peroxiredoxins (Prdxs) are a family of small (22-27kDa) non-seleno peroxidases currently known to possess six mammalian isoforms. Although their individual roles in cellular redox regulation and antioxidant protection are quite distinct, they all catalyze peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are found to be expressed ubiquitously and in high levels, suggesting that they are both an ancient and important enzyme family. Prdxs can be divided into three major subclasses: typical 2-cysteine (2-Cys) Prdxs (Prdx1-4), atypical 2-Cys Prdx (Prdx 5) and 1-Cys Prdx (Prdx 6). Recent evidence suggests that 2-Cys peroxiredoxins are more than “just simple peroxidases”. This hypothesis has been discussed elegantly in recent review articles, considering “over”-oxidation of the protonated thiolate peroxidatic cysteine and post-translational modification of Prdxs as processes initiating a mechanistic switch from peroxidase to chaperon function. The process of over-oxidation of the peroxidatic cysteine (CP) occurs during catalysis in the presence of thioredoxin (Trx), thus rendering the sulfenic moiety to sulfinic acid , which can be reduced by sulfiredoxin (Srx). However, further oxidation to sulfonic acid is believed to promote Prdx degradation or, as recently shown, the formation of oligomeric peroxidase-inactive chaperones10 with questionable H2O2-scavenging capacity. In the light of this and given that Prdx1 has recently been shown by us and by others to interact directly with signaling molecules, we will explore the possibility that H2O2 regulates signaling in the cell in a temporal and spatial fashion via oxidizing Prdx1. Therefore, this review will focus on H2O2 modulating cell signaling via Prdxs by discussing: a) the activity of Prdxs towards H2O2; b) sub cellular localization and availability of other peroxidases, such as catalase or glutathione peroxidases; c) the availability of Prdxs reducing systems such as thioredoxin and sulfiredoxin and lastly, d) Prdx1 interacting signaling molecules.  相似文献   

2.
Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system. The function of Prdx6 in phox activity is further investigated. In reconstituted phox-competent K562 cells, siRNA-mediated suppression of Prdx6 resulted in decreased NADPH oxidase activity in response to formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). In neutrophils stimulated with PMA, Prdx6 translocated to plasma membrane as demonstrated by Western blot and confocal microscopy. Translocation of Prdx6 in phox competent K562 cells required both p67phox and p47phox. In addition, plasma membrane from PMA-stimulated, oxidase competent K562 cells with siRNA-mediated Prdx6 suppression contained less p47phox and p67phox compared to cells in which Prdx6 was not decreased. Cell-free oxidase assays showed that recombinant Prdx6 did not alter the Km for NADPH, but increased the Vmax for O2- production in a saturable, Prdx6 concentration-dependent manner. Recombinant proteins with mutations in Prdx (C47S) and phospholipase (S32A) activity both enhanced cell-free phox activity to the same extent as wild type protein. Prdx6 supports retention of the active oxidase complex in stimulated plasma membrane, and results with mutant proteins imply that Prdx6 serves an additional biochemical or structural role in supporting optimal NADPH oxidase activity.  相似文献   

3.
Peroxiredoxin 6 (Prdx6), a bifunctional enzyme with glutathione peroxidase and phospholipase A2 (PLA(2)) activities, participates in the activation of NADPH oxidase 2 (NOX2) in neutrophils, but the mechanism for this effect is not known. We now demonstrate that Prdx6 is required for agonist-induced NOX2 activation in pulmonary microvascular endothelial cells (PMVEC) and that the effect requires the PLA(2) activity of Prdx6. Generation of reactive oxygen species (ROS) in response to angiotensin II (Ang II) or phorbol 12-myristate 13-acetate was markedly reduced in perfused lungs and isolated PMVEC from Prdx6 null mice. Rac1 and p47(phox), cytosolic components of NOX2, translocated to the endothelial cell membrane after Ang II treatment in wild-type but not Prdx6 null PMVEC. MJ33, an inhibitor of Prdx6 PLA(2) activity, blocked agonist-induced PLA(2) activity and ROS generation in PMVEC by >80%, whereas inhibitors of other PLA(2)s were ineffective. Transfection of Prx6 null cells with wild-type and C47S mutant Prdx6, but not with mutants of the PLA(2) active site (S32A, H26A, and D140A), "rescued" Ang II-induced PLA(2) activity and ROS generation. Ang II treatment of wild-type cells resulted in phosphorylation of Prdx6 and its subsequent translocation from the cytosol to the cell membrane. Phosphorylation as well as PLA(2) activity and ROS generation were markedly reduced by the MAPK inhibitor, U0126. Thus, agonist-induced MAPK activation leads to Prdx6 phosphorylation and translocation to the cell membrane, where its PLA(2) activity facilitates assembly of the NOX2 complex and activation of the oxidase.  相似文献   

4.
Peroxiredoxin 6 (Prdx6) differs from other mammalian peroxiredoxins both in its ability to reduce phospholipid hydroperoxides at neutral pH and in having phospholipase A2 (PLA2) activity that is maximal at acidic pH. We previously showed an active site C47 for peroxidase activity and a catalytic triad S32-H26-D140 necessary for binding of phospholipid and PLA2 activity. This study evaluated binding of reduced and oxidized phospholipid hydroperoxide to Prdx6 at cytosolic pH. Incubation of recombinant Prdx6 with 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PLPCOOH) resulted in peroxidase activity, cys47 oxidation as detected with Prdx6-SO2(3) antibody, and a marked shift in the Prdx6 melting temperature by circular dichroism analysis indicating that PLPCOOH is a specific substrate for Prdx6. Preferential Prdx6 binding to oxidized liposomes was detected by changes in DNS-PE or bis-Pyr fluorescence and by ultrafiltration. Site-specific mutation of S32 or H26 in Prdx6 abolished binding while D140 mutation had no effect. Treatment of A549 cells with peroxides led to lipid peroxidation and translocation of Prdx6 from the cytosol to the cell membrane. Thus, the pH specificity for the two enzymatic activities of Prdx6 can be explained by the differential binding kinetics of the protein; Prdx6 binds to reduced phospholipid at acidic pH but at cytosolic pH binds only phospholipid that is oxidized compatible with a role for Prdx6 in the repair of peroxidized cell membranes.  相似文献   

5.
Peroxiredoxin 6 (Prdx6), a bifunctional 25-kDa protein with both GSH peroxidase and phospholipase A2 activities, is the only mammalian 1-Cys member of the peroxiredoxin superfamily and is expressed in all major organs, with a particularly high level in lung. Prdx6 uses GSH as an electron donor to reduce H2O2 and other hydroperoxides including phospholipid hydroperoxides at approximately 5 micromol/mg protein/min with K1 approximately 3 x 10(6) M(-1) s(-1). Oxidation of the Cys47 to a sulfenic acid during catalysis requires piGST-catalyzed glutathionylation and reduction with GSH to complete the enzymatic cycle. Prdx6 stably overexpressed in cells protected against oxidative stress, whereas antisense treatment resulted in oxidant stress and apoptosis. Adenoviral-mediated overexpression of Prdx6 in mouse lungs protected against the toxicity of hyperoxia, whereas Prdx6-null mice were more sensitive to the effects of hyperoxia or paraquat. We postulate that Prdx6 functions in antioxidant defense mainly by facilitating repair of damaged cell membranes via reduction of peroxidized phospholipids. The PLA2 activity of Prdx6 is Ca2+ independent and maximal at acidic pH. Inhibition of PLA2 activity results in alterations of lung surfactant phospholipid synthesis and turnover. Thus, Prdx6, a unique mammalian peroxiredoxin, is an important antioxidant enzyme and has a major role in lung phospholipid metabolism.  相似文献   

6.
Peroxiredoxins (Prdxs), a family of antioxidant and redox-signaling proteins, are plentiful within the heart; however, their cardiac functions are poorly understood. These studies were designed to characterize the complex changes in Prdxs induced by oxidant stress in rat myocardium. Hydrogen peroxide, a Prdx substrate, was used as the model oxidant pertinent to redox signaling during health and to injury at higher concentrations. Rat hearts were aerobically perfused with a broad concentration range of hydrogen peroxide by the Langendorff method, homogenized, and analyzed by immunoblotting. Heart extracts were also analyzed by size-exclusion chromatography under nondenaturing conditions. Hydrogen peroxide-induced changes in disulfide bond formation, nonreversible oxidation of cysteine (hyperoxidation), and subcellular localization were determined. Hydrogen peroxide induced an array of changes in the myocardium, including formation of disulfide bonds that were intermolecular for Prdx1, Prdx2, and Prdx3 but intramolecular within Prdx5. For Prdx1, Prdx2, and Prdx5, disulfide bond formation can be approximated to an EC(50) of 10-100, 1-10, and 100-1,000 microM peroxide, respectively. Hydrogen peroxide induced hyperoxidation, not just within monomeric Prdx (by SDS-PAGE), but also within Prdx disulfide dimers, and reflects a flexibility within the dimeric unit. Prdx oxidation was also associated with movement from the cytosolic to the membrane and myofilament-enriched fractions. In summary, Prdxs undergo a complex series of redox-dependent structural changes in the heart in response to oxidant challenge with its substrate hydrogen peroxide.  相似文献   

7.
Peroxiredoxin 6 (Prdx6) is a bifunctional protein with glutathione peroxidase and phospholipase A(2) (PLA(2)) activities, and it alone among mammalian peroxiredoxins can hydrolyze phospholipids. After identifying a potential catalytic triad (S32, H26, D140) from the crystal structure, site-specific mutations were used to evaluate the role of these residues in protein structure and function. The S32A mutation increased Prdx6 alpha-helical content, whereas secondary structure was unchanged by mutation to H26A and D140A. Lipid binding by wild-type Prdx6 to negatively charged unilamellar liposomes showed an apparent rate constant of 11.2 x 10(6) M(-1) s(-1) and a dissociation constant of 0.36 microM. Both binding and PLA(2) activity were abolished in S32A and H26A; in D140A, activity was abolished but binding was unaffected. Overoxidation of the peroxidatic C47 had no effect on lipid binding or PLA(2) activity. Fluorescence resonance energy transfer from endogenous tryptophanyls to lipid probes showed binding of the phospholipid polar head in close proximity to S32. Thus, H26 is a site for interfacial binding to the liposomal surface, S32 has a key role in maintaining Prdx6 structure and for phospholipid substrate binding, and D140 is involved in catalysis. This putative catalytic triad plays an essential role for interactions of Prdx6 with phospholipid substrate to optimize the protein-substrate complex for hydrolysis.  相似文献   

8.
PRDX6 is a bifunctional protein with both glutathione peroxidase (GPx) and calcium-independent phospholipase A2 (iPLA2) activities, which are concomitantly increased with the expression of PRDX6. PRDX6 promoted lung tumor growth in an in vivo allograft model. Herein, we further studied the vital roles in tumor progression of PRDX6 in lung cancer using nude mice bearing PRDX6-overexpressing lung cancer cells. Nude mice xenografted with PRDX6 showed increases in tumor size and weight compared to control mice. Histopathological and Western blotting examination demonstrated that expression of proliferating cell nuclear antigen, vascular endothelial growth factor, metalloproteinases 2 and 9, and cyclin-dependent kinases accompanied by increased iPLA2 and GPx activities were increased in the tumor tissues of PRDX6-overexpressing nude mice. In tumor tissues of PRDX6-overexpressing mice, the activation of mitogen-activated protein kinases and AP-1 DNA binding were also increased. The growth of lung cancer cell lines (A549 and NCI-H460) was enhanced by the increase in iPLA2 and GPx activities of PRDX6. In addition, mutant PRDX6 (C47S) attenuated PRDX6-mediated p38, ERK1/2, and AP-1 activities as well as its enzyme activities in the A549 and NCI-H460 lines. Furthermore, tumor growth and p38, ERK1/2, and AP-1 activities were also inhibited in nude mice bearing mutant PRDX6 (C47S) compared to PRDX6. Therefore, our findings indicate that PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities.  相似文献   

9.
10.
We evaluated the antioxidant role of peroxiredoxin 6 (Prdx6) in primary lung alveolar epithelial type II cells (AEC II) that were isolated from wild type (WT), Prdx6-/-, or Prdx6 transgenic (Tg) overexpressing mice and exposed to H(2)O(2) at 50-500 microM for 1-24 h. Expression of Prdx6 in Tg AEC II was sevenfold greater than WT. Prdx6 null AEC II exposed to H(2)O(2) showed concentration-dependent cytotoxicity indicated by decreased "live/dead" cell ratio, increased propidium iodide (PI) staining, increased annexin V binding, increased DNA fragmentation by TUNEL assay, and increased lipid peroxidation by diphenylpyrenylphosphine (DPPP) fluorescence. Compared to Prdx6 null cells, oxidant-mediated damage was significantly less in WT AEC II and was least in Prdx6 Tg cells. Thus, Prdx6 functions as an antioxidant enzyme in mouse AEC II. Prdx6 has been shown previously to reduce phospholipid hydroperoxides and we postulate that this activity is a major mechanism for the effectiveness of Prdx6 as an antioxidant enzyme.  相似文献   

11.
Peroxiredoxins (Prdx), a family of antioxidant proteins, have important defensive roles in the degenerative brain diseases and neuronal cell death in adult subjects. However, little is known in the neonatal brain. Here, we studied the developmental expression of Prdxs and their response to dexamethasone in the perinatal rat brain. Prdx 1 expression increased during late gestations and peaked at postnatal-day 1, when its expression gradually decreased. Prdx 2 expression remained largely unchanged. Prdx 6 expression continually increased as growing. Using immunohistochemistry, each Prdx showed a strong expression in the cerebral cortex and hippocampus. Prdx 1 was strongly expressed in the corpus callosum. The dexamethasone injection increased the expression of Prdx 6. In conclusion, we reveal for the first time that Prdx 1, 2 and 6 are found in abundance in the perinatal rat brain and are differentially expressed during development. The expression of Prdx 6 was affected by dexamethasone treatment.  相似文献   

12.
《Free radical research》2013,47(10):836-846
Abstract

Oxidative stress triggered by amyloid beta (Aβ) accumulation contributes substantially to the pathogenesis of Alzheimer's disease (AD). In the present study, we examined the involvement of the antioxidant activity of peroxiredoxin 6 (Prdx 6) in protecting against Aβ25–35-induced neurotoxicity in rat PC12 cells. Treatment of PC12 cells with Aβ25-35 resulted in a dose- and time-dependent cytotoxicity that was associated with increased accumulation of intracellular reactive oxygen species (ROS) and mitochondria-mediated apoptotic cell death, including activation of Caspase 3 and 9, inactivation of poly ADP-ribosyl polymerse (PARP), and dysregulation of Bcl-2 and Bax. This apoptotic signaling machinery was markedly attenuated in PC12 cells that overexpress wild-type Prdx 6, but not in cells that overexpress the C47S catalytic mutant of Prdx 6. This indicates that the peroxidase activity of Prdx 6 protects PC12 cells from Aβ25-35-induced neurotoxicity. The neuroprotective role of the antioxidant Prdx 6 suggests its therapeutic and/or prophylactic potential to slow the progression of AD and limit the extent of neuronal cell death caused by AD.  相似文献   

13.
The mammalian 1-Cys peroxiredoxin (Prdx6) is a unique member of the peroxiredoxin family of proteins capable of protecting cells from metal-catalyzed oxidative damage. We recently identified Prdx6 as a candidate for the quantitative trait locus Ath1, a gene responsible for a difference in diet-induced atherosclerosis susceptibility in mice. To investigate the role of Prdx6 in atherosclerosis, we generated transgenic mice that overexpress the Prdx6 allele from the Ath1-resistant 129/SvJ strain on an Ath1-susceptible C57BL/6J background. These mice expressed significantly elevated levels of Prdx6 mRNA and protein in multiple tissues including liver, aorta, and peritoneal macrophages, which accumulated significantly lower levels of hydrogen peroxide, revealing an enhanced antioxidant activity in these mice. However, overexpression of Prdx6 had no protective effect on LDL oxidation in vitro, and transgenic mice fed an atherogenic diet for 10 weeks did not possess an increased resistance to atherosclerosis nor did they maintain the high prediet plasma HDL levels consistent with the Ath1-resistant phenotype. In addition, the Prdx6 allele from the susceptible strain was shown to have a higher antioxidant activity than that of the resistant strains. These data suggest that the increased peroxidase activity attributable to Prdx6 overexpression in transgenic mice is not sufficient to protect mice from atherosclerosis, and that Prdx6 is not likely to be the gene underlying Ath1.  相似文献   

14.
Glutathione S-transferase pi (GST pi) has been shown to reactivate oxidized 1-cysteine peroxiredoxin (1-Cys Prx, Prx VI, Prdx6, and AOP2). We now demonstrate that a heterodimer complex is formed between 1-Cys Prx with a C-terminal His6 tag and GST pi upon incubation of the two proteins at pH 8.0 in buffer containing 20% 1,6-hexanediol to dissociate the homodimers, followed by dialysis against buffer containing 2.5 mM glutathione (GSH) but lacking 1,6-hexanediol. The heterodimer can be purified by chromatography on nickel-nitriloacetic acid agarose in the presence of GSH. N-Terminal sequencing showed that equimolar amounts of the two proteins are present in the isolated complex. In the heterodimer, 1-Cys Prx is fully active toward either H2O2 or phospholipid hydroperoxide, while the GST pi activity is approximately 25% of that of the GST pi homodimer. In contrast, the 1-Cys Prx homodimer lacks peroxidase activity even in the presence of free GSH. The heterodimer is also formed in the presence of S-methylglutathione, but no 1-Cys Prx activity is found under these conditions. The yield of heterodimer is decreased in the absence of 1,6-hexanediol or GSH. Rapid glutathionylation of 1-Cys Prx in the heterodimer is detected by immunoblotting. Subsequently, a disulfide-linked dimer is observed on SDS-PAGE, and the free cysteine content is decreased by 2 per heterodimer. The involvement of particular binding sites in heterodimer formation was tested by site-directed mutagenesis of the two proteins. For 1-Cys Prx, neither Cys47 nor Ser32 is required for heterodimer formation but Cys47 is essential for 1-Cys Prx activation. For GST pi, Cys47 and Tyr7 (at or near the GSH-binding site) are needed for heterodimer formation but three other cysteines are not. We conclude that reactivation of oxidized 1-Cys Prx by GST pi occurs by heterodimerization of 1-Cys Prx and GST pi harboring bound GSH, followed by glutathionylation of 1-Cys Prx and then formation of an intersubunit disulfide. Finally, the GSH-mediated reduction of the disulfide regenerates the reduced active-site sulfhydryl of 1-Cys Prx.  相似文献   

15.
16.
Peroxiredoxin 6 (Prdx6) is a "moonlighting" protein with both GSH peroxidase and phospholipase A(2) (PLA(2)) activities. This protein is responsible for degradation of internalized dipalmitoylphosphatidylcholine, the major phospholipid component of lung surfactant. The PLA(2) activity is inhibited by surfactant protein A (SP-A). We postulate that SP-A regulates the PLA(2) activity of Prdx6 through direct protein-protein interaction. Recombinant human Prdx6 and SP-A isolated from human alveolar proteinosis fluid were studied. Measurement of kinetic constants at pH 4.0 (maximal PLA(2) activity) showed K(m)0.35 mm and V(max) 138 nmol/min/mg of protein. SP-A inhibited PLA(2) activity non-competitively with K(i) 10 mug/ml and was Ca(2+) -independent. Activity at pH 7.4 was approximately 50% less, and inhibition by SP-A was partially dependent on Ca(2+). Interaction of SP-A and Prdx6 at pH 7.4 was shown by Prdx6-mediated inhibition of SP-A binding to agarose beads, a pull-down assay using His-tagged Prdx6 and Ni(2) -chelating beads, co-immunoprecipitation from lung epithelial cells and from a binary mixture of the two proteins, binding after treatment with a trifunctional cross-linker, and size-exclusion chromatography. Analysis by static light scattering and surface plasmon resonance showed calcium-independent SP-A binding to Prdx6 at pH 4.0 and partial Ca(2+) dependence of binding at pH 7.4. These results indicate a direct interaction between SP-A and Prdx6, which provides a mechanism for regulation of the PLA(2) activity of Prdx6 by SP-A.  相似文献   

17.
This report provides definitive evidence that the protein 1-Cys peroxiredoxin is a bifunctional ("moonlighting") enzyme with two distinct active sites. We have previously shown that human, rat, and bovine lungs contain an acidic Ca(2+)-independent phospholipase A(2) (aiPLA(2)). The cDNA encoding aiPLA(2) was found to be identical to that of a non-selenium glutathione peroxidase (NSGPx). Protein expressed using a previously reported E. coli construct which has a His-tag and 50 additional amino acids at the NH(2) terminus, did not exhibit aiPLA(2) activity. A new construct which contains the His-tag plus two extra amino acids at the COOH terminus when expressed in Escherichia coli generated a protein that hydrolyzed the sn-2 acyl chain of phospholipids at pH 4, and exhibited NSGPx activity with H(2)O(2) at pH 8. The expressed 1-Cys peroxiredoxin has identical functional properties to the native lung enzyme: aiPLA(2) activity is inhibited by the serine protease inhibitor, diethyl p-nitrophenyl phosphate, by the tetrahedral mimic 1-hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33), and by 1-Cys peroxiredoxin monoclonal antibody (mAb) 8H11 but these agents have no effect on NSGPx activity; NSGPx activity is inhibited by mercaptosuccinate and by 1-Cys peroxiredoxin mAb 8B3 antibody which have no effect on aiPLA(2) activity. Mutation of Ser(32) to Ala abolishes aiPLA(2) activity, yet the NSGPx activity remains unaffected; a Cys(47) to Ser mutant is devoid of peroxidase activity but aiPLA(2) activity remains intact. These results suggest that Ser(32) in the GDSWG consensus sequence provides the catalytic nucleophile for the hydrolase activity of aiPLA(2), while Cys(47) in the PVCTTE consensus sequence is at the active site for peroxidase activity. The bifunctional catalytic properties of 1-Cys peroxiredoxin are compatible with a simultaneous role for the protein in the regulation of phospholipid turnover as well as in protection against oxidative injury.  相似文献   

18.
Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of cysteine sulfinic acid of hyperoxidized peroxiredoxins (Prxs). Having high affinity toward H2O2, 2-Cys Prxs can efficiently reduce H2O2 at low concentration. We previously showed that Prx I is hyperoxidized at a rate of 0.072% per turnover even in the presence of low steady-state levels of H2O2. Here we examine the novel role of Srx in cells exposed to low steady-state levels of H2O2, which can be achieved by using glucose oxidase. Exposure of low steady-state levels of H2O2 (10-20 μm) to A549 or wild-type mouse embryonic fibroblast (MEF) cells does not lead to any significant change in oxidative injury because of the maintenance of balance between H2O2 production and elimination. In contrast, loss-of-function studies using Srx-depleted A549 and Srx-/- MEF cells demonstrate a dramatic increase in extra- and intracellular H2O2, sulfinic 2-Cys Prxs, and apoptosis. Concomitant with hyperoxidation of mitochondrial Prx III, Srx-depleted cells show an activation of mitochondria-mediated apoptotic pathways including mitochondria membrane potential collapse, cytochrome c release, and caspase activation. Furthermore, adenoviral re-expression of Srx in Srx-depleted A549 or Srx-/- MEF cells promotes the reactivation of sulfinic 2-Cys Prxs and results in cellular resistance to apoptosis, with enhanced removal of H2O2. These results indicate that Srx functions as a novel component to maintain the balance between H2O2 production and elimination and then protects cells from apoptosis even in the presence of low steady-state levels of H2O2.  相似文献   

19.
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase and phospholipase A(2) (PLA(2)) activities. Although the cellular function of the peroxidase of Prdx6 has been well elucidated, the function of the PLA(2) of Prdx6 is largely unknown. Here, we report a novel function for the PLA(2) in regulating TNF-induced apoptosis through arachidonic acid (AA) release and interleukin-1β (IL-1β) production. Prdx6 knockdown (Prdx6(KD)) in human bronchial epithelial cells (BEAS2B) shows severe decreases of peroxidase and PLA(2) activities. Surprisingly, Prdx6(KD) cells are markedly resistant to apoptosis induced by TNF-α in the presence of cycloheximide, but are highly sensitive to hydrogen peroxide-induced apoptosis. Furthermore, the release of AA and the production of IL-1β induced by proinflammatory stimuli, such as TNF-α, LPS, and poly I/C, are severely decreased in Prdx6(KD) cells. More interestingly, the restoration of Prdx6 expression with wild-type Prdx6, but not PLA(2)-mutant Prdx6 (S32A), in Prdx6(KD) cells dramatically induces the recovery of TNF-induced apoptosis, AA release, and IL-1β production, indicating specific roles for the PLA(2) activity of Prdx6. Our results provide new insights into the distinct roles of bifunctional Prdx6 with peroxidase and PLA(2) activities in oxidative stress-induced and TNF-induced apoptosis, respectively.  相似文献   

20.
In rat uterine stromal cells (U(III) cells), an oxidative stress induced by H(2)O(2) caused a dose-dependent release of arachidonic acid (AA) that was independent of intracellular Ca(2+) concentration and was not inhibited by Ca(2+)-dependent phospholipase A(2) (cPLA(2)) inhibitors, nor by protein kinase C (PKC) inhibitors or by PKC down-regulation. H(2)O(2) treatment did not impair AA esterification but significantly increased Ca(2+)-independent PLA(2) (iPLA(2)) activity. Since iPLA(2) specific inhibitor bromoenollactone almost completely suppressed the release of AA induced by H(2)O(2), we conclude that iPLA(2) activity represents the major mechanism by which H(2)O(2) increases the availability of non-esterified AA in U(III) cells. Moreover, PKC inhibitors sphingosine and calphostin C markedly potentiated the release of AA trigger by H(2)O(2), suggesting a regulatory mechanism of iPLA(2) by PKC that remains to be clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号