首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding of NAD+, NADH, and ADP-ribose to horse liver alcohol dehydrogenase has been studied calorimetrically as a function of pH at 25 degrees C. The enthalpy of NADH binding is 0 +/- 0.5 kcal mol-1 in the pH range 6 to 8.6. The enthalpy of NAD+ binding, however, varies with pH in a sigmoidal fashion and is -4.0 kcal mol(NAD)-1 at pH 6.0 and +4.5 kcal mol(NAD)-1 at pH 8.6 with an apparent pKa of 7.6 +/- 0.2. The enthalpy of proton ionization of the group on the enzyme is calculated to be in the range 8.8 to 9.8 kcal mol(H+)-1. In conjunction with the available thermodynamic data on the ionization of zinc-bound water in model compounds, it is concluded that the group with a pKa of 9.8 in the free enzyme and 7.6 in the enzyme . NAD+ binary complex is, most likely, the zinc-bound water molecule. Our studies with zinc-free enzyme provide further evidence for this conclusion. Therefore, the processes involving a conformational change of the enzyme upon NAD+ binding and the suggested mechanism of subsequent quenching of the fluorescence of Trp-314 implicating the participation of an ionized tyrosine group must be re-evaluated in the light of this thermodynamic study.  相似文献   

2.
Human class I beta 3 beta 3 is one of the alcohol dehydrogenase dimers that catalyzes the reversible oxidation of ethanol. The beta 3 subunit has a Cys substitution for Arg-369 (beta 369C) in the coenzyme-binding site of the beta1 subunit. Kinetic studies have demonstrated that this natural mutation in the coenzyme-binding site decreases affinity for NAD+ and NADH. Structural studies suggest that the enzyme isomerizes from an open to closed form with coenzyme binding. However, the extent to which this isomerization limits catalysis is not known. In this study, stopped-flow kinetics were used from pH 6 to 9 with recombinant beta 369C to evaluate rate-limiting steps in coenzyme association and catalysis. Association rates of NADH approached an apparent zero-order rate with increasing NADH concentrations at pH 7.5 (42 +/- 1 s-1). This observation is consistent with an NADH-induced isomerization of the enzyme from an open to closed conformation. The pH dependence of apparent zero-order rate constants fit best a model in which a single ionization limits diminishing rates (pKa = 7.2 +/- 0.1), and coincided with Vmax values for acetaldehyde reduction. This indicates that NADH-induced isomerization to a closed conformation may be rate-limiting for acetaldehyde reduction. The pH dependence of equilibrium NADH-binding constants fits best a model in which a single ionization leads to a loss in NADH affinity (pKa = 8.1 +/- 0. 2). Rate constants for isomerization from a closed to open conformation were also calculated, and these values coincided with Vmax for ethanol oxidation above pH 7.5. This suggests that NADH-induced isomerization of beta 369C from a closed to open conformation is rate-limiting for ethanol oxidation above pH 7.5.  相似文献   

3.
The oxidation-reduction potentials of lignin peroxidase isozymes H1, H2, H8, and H10 as well as the Mn-dependent peroxidase isozymes H3 and H4 are reported. The potentiometric titrations involving the ferrous and ferric states of the enzyme had Nernst plots indicating single-electron transfer. The Em7 values of lignin peroxidase isozymes H1, H2, H8, and H10 are -142, -135, -137, and -127 mV versus standard hydrogen electrode, respectively. The Em7 values for the Mn-dependent peroxidase isozymes H3 and H4 are -88 and -93 mV versus standard hydrogen electrode, respectively. The midpoint potential of H1, H8, and H4 remained unchanged in the presence of their respective substrates, veratryl alcohol and Mn(II). The midpoint potential between the ferric and ferrous forms of isozymes H1 and H4 exhibited a pH-dependent change between pH 3.5 and pH 6.5. These results indicate that the reductive half-reaction of the enzymes is the following: ferric peroxidase + le- + H+----ferrous peroxidase. Above pH 6.5, the effect of pH on the midpoint potential is diminished and indicates that an ionization with an apparent pKa equal to approximately 6.6-6.7 occurs in the reduced form of the enzymes. A heme-linked ionization group in the ferrous form of the enzymes was confirmed by studying the effect of pH on the absorption spectra of isozymes H1 and H4. These spectrophotometric pH titration experiments confirmed the electrochemical results indicating pKa values of 6.59 and 6.69 for reduced isozymes H1 and H4, respectively. These results indicate the presence of a heme-linked ionization of an amino acid in the reduced form of the lignin peroxidase isozymes similar to that of other plant peroxidases.  相似文献   

4.
1. The transient-state kinetics of ligand-displacement reactions have been analyzed. Methods based on this analysis have been used to obtain reliable estimates of on-velocity and off-velocity constants for coenzyme binding to liver alcohol dehydrogenase at different pH values between 6 and 10. 2. The rate of NADH dissociation from the enzyme shows no pronounced dependence on pH. The rate of NAD+ dissociation is controlled by a group with a pKa of 7.6, agreeing with the pKa reported to regulate the binding of certain inhibitory substrate analogues to the enzyme . NAD+ complex. 3. Critical experiments have been performed to test a recent proposal that on-velocity constants for the binding of NADH and NAD+ are controlled by proton equilibria exhibiting different pKa values. The results show that association rates for NADH and NAD+ exhibit the same pH dependence corresponding to a pKa of 9.2. Titrimetric evidence is presented indicating that the latter effect of pH derives from ionization of a group which affects the anion-binding capacity of the coenzyme-binding site.  相似文献   

5.
Titration of Asp-85, the proton acceptor and part of the counterion in bacteriorhodopsin, over a wide pH range (2-11) leads us to the following conclusions: 1) Asp-85 has a complex titration curve with two values of pKa; in addition to a main transition with pKa = 2.6 it shows a second inflection point at high pH (pKa = 9.7 in 150-mM KCl). This complex titration behavior of Asp-85 is explained by interaction of Asp-85 with an ionizable residue X'. As follows from the fit of the titration curve of Asp-85, deprotonation of X' increases the proton affinity of Asp-85 by shifting its pKa from 2.6 to 7.5. Conversely, protonation of Asp-85 decreases the pKa of X' by 4.9 units, from 9.7 to 4.8. The interaction between Asp-85 and X' has important implications for the mechanism of proton transfer. In the photocycle after the formation of M intermediate (and protonation of Asp-85) the group X' should release a proton. This deprotonated state of X' would stabilize the protonated state of Asp-85.2) Thermal isomerization of the chromophore (dark adaptation) occurs on transient protonation of Asp-85 and formation of the blue membrane. The latter conclusion is based on the observation that the rate constant of dark adaptation is directly proportional to the fraction of blue membrane (in which Asp-85 is protonated) between pH 2 and 11. The rate constant of isomerization is at least 10(4) times faster in the blue membrane than in the purple membrane. The protonated state of Asp-85 probably is important for the catalysis not only of all-trans <=> 13-cis thermal isomerization during dark adaptation but also of the reisomerization of the chromophore from 13-cis to all-trans configuration during N-->O-->bR transition in the photocycle. This would explain why Asp-85 stays protonated in the N and O intermediates.  相似文献   

6.
Temperature jumps on mixtures of hemoglobin and pH indicators give rise to relaxation signals in the microsecond range. The pH and concentration dependences of the reciprocal relaxation time, 1/tau, may be rationalized on the basis of a reaction scheme in which a slow isomerization process in the protein moiety is coupled to a rapid co-operative ionization of two protons. At 11 degrees C the rate constants of the isomerization are kr = 4.2(+/- 1.8) x 10(4) s-1 and kf = 1.3(+/- 0.1) x 10(4) s-1 in deoxyhemoglobin; in carbonmonoxyhemoglobin they are kr = 3.9(+/- 1.3) x 10(4) s-1 and kf = 5.3(+/- 1.8) x 10(3) s-1. The pKa values of the coupled ionizing groups are 5.3 in deoxy- and 6.0 in carbonmonoxyhemoglobin. Modification of the CysF9(93) beta sulfhydryl group with iodoacetamide abolishes the pH dependence of 1/tau, suggesting that this sulfhydryl is involved in the isomerization process. Consideration of the X-ray structure of oxyhemoglobin allows a structural interpretation of the results. It is concluded that the isomerization may be important for the physiological function of hemoglobin, but that it is not identical with the quaternary structure transition.  相似文献   

7.
The rate of oxidation of L-(-)-tyrosine by horseradish peroxidase compound 1 has been studied as a function of pH at 25 degrees C and ionic strength 0.11. Over the pH range of 3.20--11.23 major effects of three ionizations were observed. The pKa values of the phenolic (pKa = 10.10) and amino (pKa = 9.21) dissociations of tyrosine and a single enzyme ionization (pKa = 5.42) were determined from nonlinear least squares analysis of the log rate versus pH profile. It was noted that the less acidic form of the enzyme was most reactive; hence, the reaction is described as base catalyzed. The rate of tyrosine oxidation falls rapidly with the deprotonation of the phenolic group.  相似文献   

8.
To allow the detailed interpretation of the pH dependences of the steady-state parameters for the reaction catalyzed by triosephosphate isomerase, three kinds of experiments have been performed. First, the value of kcat/Km for enzyme-catalyzed isomerization of the phosphonate analogue of D-glyceraldehyde 3-phosphate (2-hydroxy-4-phosphonobutyraldehyde) has been shown to titrate with an apparent pKa of 7.5, which is close to the phosphonate's second ionization constant. Secondly, the sulfate ester analogue of dihydroxyacetone phosphate (dihydroxyacetone sulfate), which exists only as a monoanion over the pH range of interest, has been shown not to bind detectably to the enzyme. Thirdly, an isotopic discrimination experiment at pH 5.2 has been compared with a similar investigation at pH 7.6. The results together demonstrate that both enzyme and substrate ionizations control the reaction rate in the pH range 5 to 8.  相似文献   

9.
A kinetic study of the reaction of two turnip peroxidases (P1 and P7) with hydrogen peroxide to form the primary oxidized compound (compound I) has been carried out over the pH range from 2.4 to 10.8. In the neutral and acidic pH regions, the rates depend linearly on hydrogen peroxide concentration whereas at alkaline pH values the rates display saturation kinetics. A compound is made with the cyanide binding reaction to peroxidases since the two reactions are influenced in the same manner by ionization of groups on the native enzymes. Two different ionization processes of peroxidase P1 with pKa values of 3.9 and 10 are required to explain the rate pH profile for the reaction with H2O2. Protonation of the former group and ionization of the latter causes a decrease in the rate of reaction of the enzyme with H2O2. In the case of peroxidase P7 a minimum model involves three ionizable groups with pKa values of 2.5, 4 and 9. Protonation of the former two groups and ionization of the latter lowers the reaction rate. In the pH-independent region, the rate of formation of compound I was measured as a function of temperature. From the Arhenius plots the activation energy for the reaction was calculated to be 2.9 +/- 0.1 kcal/mol for P1 and 5.4 +/- 0.3 kcal/mol for P7. However, the rates are independent of viscosity in glycerol-water mixtures up to 30% glycerol.  相似文献   

10.
M R Eftink 《Biochemistry》1986,25(21):6620-6624
The fluorescence of alcohol dehydrogenase is quenched by the acid dissociation of some group on the protein having an apparent pKa of 9.6 at 25 degrees C. The pKa of this alkaline quenching transition is unchanged by the binding of trifluoroethanol or pyrazole to the enzyme or by the selective removal of the active site of Zn2+ ion. This indicates that the ionization of a zinc-bound water molecule is not responsible for the quenching. The binding of NAD+ to the enzyme causes a drop in protein fluorescence and an apparent shift in the alkaline quenching transition to lower pH. In the ternary complex formed with NAD+ and trifluoroethanol the alkaline transition is difficult to discern between pH 6 and pH 11. In the NAD+-pyrazole ternary complex, however, a small but noticeable fluorescence transition is observed with a pKa(app) approximately 9.5. We propose that the alkaline transition centered at pH 9.6 is not shifted to lower pH upon binding NAD+. Instead, the amplitude of the alkaline quenching effect is decreased to the point that it is difficult to detect when NAD+ is bound. We present a model that describes the dependence of the fluorescence of the protein on pH and NAD+ concentration in terms of two independently operating, dynamic quenching mechanisms. Our data and model cast serious doubt on the identification, made previously in the literature, between the alkaline quenching pKa and the pKa of the group whose ionization is coupled to NAD+ binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

12.
Starting with a mutant of Saccharomyces cerevisiae lacking glucokinase and both the hexokinase isozymes P1 and P2, strains were constructed, by genetic crosses, that carry single glucose-phosphorylating enzymes. The P1 and P2 isozymes and a structurally altered form of P1 hexokinase were partially purified from these strains. Hexokinases P1, P2, and the altered P1 enzyme, respectively, phosphorylate fructose nearly four, two, and ten times as fast as they phosphorylate glucose. Strains bearing P1 show a pronounced Pasteur reaction and phosphorylate glucose, fructose, and mannose faster than those bearing the P2 isozyme. However, there is no appreciable difference between these two hexokinases in regard to the rate and the extent of growth that they sustain. The ability of yeast to grow on a particular sugar is contingent only upon the presence of an enzyme that phosphorylates it. Glucokinase seems to be responsible for catalyzing nearly half of the glucose flux in the wild type yeast. Strains bearing glucokinase alone do show a Pasteur effect.  相似文献   

13.
The role of several active site residues of alpha-chymotrypsin in the prototypical refolding transition between active and inactive forms of this enzyme is examined using chemical modification. Oxidation of Met-192 to the sulfoxide results in a derivative which remains entirely in an active state from pH 6 to 9. The derivative becomes inactive only at high pH with pKa = 10.3, delta H0 = 9.5 kcal and delta S0 = -15 eu., indicating the sulfoxide group supplies about 2.1 kcal of active state stabilization relative to the unoxidized methionine side chain. The refolding transition of N-methyl-His-57-alpha-chymotrypsin, in which a nitrogen of the "charge relay" histidine is methylated, displays one ionization process with an apparent pKa of 9.45. The absence of an additional ionization process with a pKa near 7 provides evidence that one of the ionizations in the six state mechanism which describes this transition in alpha-chymotrypsin is linked to the charge relay system. We also demonstrate, using alpha-chymotrypsin, Met-192-sulfoxide-alpha-chymotrypsin and N-methyl-His-57-alpha-chymotrypsin, that the 230 nm circular dichroism band is a quantitative probe of the active-inactive equilibrium, although the chromophore or chromophores responsible for this and another very large negative band at 202 nm have not been identified. Circular dichroism was used to observe the active-inactive equilibrium in methan sulfonyl-alpha-chymotrypsin and phenylmethane sulfonyl-alpha-chymotrypsin. The enhanced stability of the active state of these derivatives relative to alpha-chymotrypsin can be rationalized in terms of steric effects in the substrate side chain binding site.  相似文献   

14.
S M Feltch  J E Stuehr 《Biochemistry》1979,18(10):2000-2004
Temperature-jump relaxation studies in deoxy-ribonuclease I were carried out at 10 degrees C and [I] = 0.1 M. The single observed relaxation time, which varied from 10(-4) to 10(-5) s, was characterized as a function of enzyme concentration, pH, and indicator concentration. The concentration and pH dependences of the relaxation time are in quantitative agreement with a mechanism involving an isomerization of the enzyme coupled to a rapid proton ionization process. The best fit forward and reverse isomerization rate constants are 6.5 X 10(3) and 7.2 X 10(4) s-1, respectively; the apparent pK is 5.7. The addition of urea brought about reductions in both the amplitude of the relaxation effect and the enzyme activity.  相似文献   

15.
There is marked pH dependence of the rate constant (koff) for tetrahydrofolate (H4folate) dissociation from its ternary complex with human dihydrofolate reductase (hDHFR) and NADPH. Similar pH dependence of H4folate dissociation from the ternary complex of a variant of hDHFR with the substitution Phe31----Leu (F31L hDHFR) causes this dissociation to become rate limiting in the enzyme mechanism at pH approximately 5, and this accounts for the marked decrease in kcat for this variant as the pH is decreased from 7 to 5. This decreased kcat at low pH is not seen for most DHFRs. koff for dissociation of folate, dihydrofolate (H2folate), and H4folate from their binary complexes with hDHFR is similarly pH dependent. For all the complexes examined, the pH dependence of koff in the range pH 5-7 is well described by a pKa of about 6.2 and must be due to ionization of a group on the enzyme. In the higher pH range (7-10), koff increases further as the pH is raised, and this relation is governed by a second pKa which is close to the pKa for ionization of the amide group (HN3-C4O) of the respective ligands. Thus, ionization of the ligand amide group also increases koff. Evidence is presented that the dependence of pH on koff for hDHFR accounts for the shape of the kcat versus pH curve for both hDHFR as well as its F31L variant and contributes to the higher efficiency of hDHFR compared with bacterial DHFR.  相似文献   

16.
Binding of carbamoyl phosphate to Escherichia coli ornithine transcarbamoylase and its relation to turnover have been examined as a function of pH under steady-state conditions. The pH profile of the dissociation constant of carbamoyl phosphate (Kiacp) shows that the affinity of the substrate increases as pH decreases. Two ionizing groups are involved in carbamoyl phosphate binding. Protonation of an enzymic group with pKa 9.6 results in productive binding of the substrate with a moderate affinity of Kiacp approximately 30 microM. Protonation of a second group further enhances binding by roughly another order of magnitude. This ionization occurs with a pKa that shifts from less than 6 in the free enzyme to 7.3 in the binary complex. However, tighter binding of carbamoyl phosphate due to this ionization does not contribute to catalysis. The turnover rate (kcat) of the enzyme diminishes in the acidic pH range and is governed by an ionization with a pKa of 7.2. Both the catalytic pKa of 7.2 and the productive binding pKa of 9.6 appear in the pH profile of kcat/KMcp. Together with earlier kinetic results (Kuo, L. C., Herzberg, W., and Lipscomb, W. N. (1985) Biochemistry 24, 4754-4761), these data suggest that the step which modulates kcat may occur prior to the binding of the second substrate L-ornithine.  相似文献   

17.
1H NMR spectroscopy of the isotropically shifted signals in cobalt carboxypeptidase, CoCPD, permits a direct and selective detection of protons belonging to the residues liganded to the metal. The chemical shift of these protons in the free enzyme and enzyme-inhibitor complexes with changing pH monitors the state of ionization of the ligands directly and of other residues in the active center indirectly. The 1H NMR spectrum of CoCPD at pH 6 shows three well-resolved isotropically shifted signals in the downfield region at 62 (a), 52 (c), and 45 (d) ppm which have been assigned to the NH proton of His-69 and to the C-4 H's of His-69 and His-196, respectively. Titration of signal a with pH is characterized by a pKa of 8.8 which is identical to that seen in prior electronic absorption and kinetic studies. The fact that the signal reflecting the NH of His-69 is still observed at pH 10 and no major shifts occur for the signals reflecting the C-4 H's indicates the alkaline pKa in carboxypeptidase A catalysis, pKEH, cannot be ascribed to ionization of the histidyl NH of either His-69 or His-196. Binding of L-Phe shifts this pKa to 7.7 while not greatly perturbing the downfield 1H NMR signals that reflect the ligation shell of the cobalt coordination sphere. These results indicate the pKa of 8.8 in CoCPD and the pKa of 7.7 in the CoCPD.L-Phe adduct reflect ionization of the same group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The X-ray structure of murine adenosine deaminase complexed with the transition-state analogue 6-hydroxyl-1,6-dihydropurine ribonucleoside has been determined from a single crystal grown at pH 4.2 and transferred to mother liquor of increasing pH up to a final pH of 6.0 prior to data collection. The structure has been refined to 2.5 A to a final crystallographic R-factor of 20% using phases from the previously refined 2.4 A structure at pH 4.2. Kinetic measurements show that the enzyme is only 20% active at pH 4.2 whereas it is fully active between pH 6.0 and pH 8.5. The refined structures at either pH are essentially the same. Consideration of the pKa values of the key catalytic residues and the mechanism proposed on the basis of the structure suggests that the ionization state of these residues is largely responsible for the pH dependence on activity.  相似文献   

19.
13C-n.m.r. was used to investigate the structure of the inhibitor enzyme complex formed when alpha-chymotrypsin is alkylated by L-1-chloro-4-phenyl-3-tosylamido-[2-13C]butan-2-one. Two signals are detected. The one at 204.82 +/- 0.11 p.p.m. does not titrate from pH 3 to 9 and is assigned to alkylated methionine-192. The second signal titrates from 99.08 p.p.m. to 103.44 p.p.m. with pKa 8.67. This signal is assigned to a tetrahedral adduct formed between the hydroxy group of serine-195 and the inhibitor. The titration shift of the tetrahedral adduct is ascribed to the ionization of the hemiketal hydroxy group. It is proposed that the resulting oxyanion is stabilized by interaction with the imidazolium ion of histidine-57. It is argued that this interaction must raise the pKa of at least 70% of histidine-57 to greater than 11. On denaturation/autolysis of the inhibitor-enzyme complex neither of the signals associated with the intact complex is detected, but a new signal is observed that titrates from 203.52 p.p.m. to 206.08 p.p.m. with pKa = 5.27. This titration shift is assigned to the ionization of the imidazolium ion of alkylated histidine, confirming that the inhibitor has alkylated histidine-57. The significance of these results for the catalytic mechanism of the serine proteinases is discussed.  相似文献   

20.
Kinetic analysis of human serine/threonine protein phosphatase 2Calpha.   总被引:1,自引:0,他引:1  
The PPM family of Ser/Thr protein phosphatases have recently been shown to down-regulate the stress response pathways in eukaryotes. Within the stress pathway, key signaling kinases, which are activated by protein phosphorylation, have been proposed as the in vivo substrates of PP2C, the prototypical member of the PPM family. Although it is known that these phosphatases require metal cations for activity, the molecular details of these important reactions have not been established. Therefore, here we report a detailed biochemical study to elucidate the kinetic and chemical mechanism of PP2Calpha. Steady-state kinetic and product inhibition studies revealed that PP2Calpha employs an ordered sequential mechanism, where the metal cations bind before phosphorylated substrate, and phosphate is the last product to be released. The metal-dependent activity of PP2C (as reflected in kcat and kcat/Km), indicated that Fe2+ was 1000-fold better than Mg2+. The pH rate profiles revealed two ionizations critical for catalytic activity. An enzyme ionization with a pKa value of 7 must be unprotonated for catalysis, and an enzyme ionization with a pKa of 9 must be protonated for substrate binding. Br?nsted analysis of substrate leaving group pKa indicated that phosphomonoester hydrolysis is rate-limiting at pH 7. 0, but not at pH 8.5 where a common step independent of the nature of the substrate and alcohol product limits turnover (kcat). Rapid reaction kinetics between phosphomonoester and PP2C yielded exponential "bursts" of product formation, consistent with phosphate release being the slow catalytic step at pH 8.5. Dephosphorylation of synthetic phosphopeptides corresponding to several protein kinases revealed that PP2C displays a strong preference for diphosphorylated peptides in which the phosphorylated residues are in close proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号