首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
Hearts undergoing cardiopulmonary arrest and resuscitation have depressed function and may have changes in signal transduction. We hypothesized that the cyclic GMP (cGMP) signaling pathway would be altered in the post-resuscitation heart. This was studied in ventricular myocytes from 7 anesthetized open-chest rabbits. Cardiopulmonary arrest was achieved for 10 min through ventricular fibrillation and respirator shutdown. After cardiopulmonary arrest, respiration was resumed, the heart was defibrillated, and the heart recovered for 15 min. Seven additional rabbits served as controls. Myocyte function was measured via a video edge detector. Myocytes were treated with 8-bromo-cGMP (10(-5)-10(-6) mol/L) followed by KT5823 (10(-6) mol/L, cGMP protein kinase inhibitor). The baseline percent shortening was significantly depressed in the cardiac arrest myocytes compared with control (3.3 +/- 0.1 vs. 5.5 +/- 0.3%). Treatment with 8-Br-cGMP similarly and dose-dependently reduced cell contraction in both cardiac arrest (-24%) and control (-25%) myocytes. The negative effect of 8-Br-cGMP was partially reversed by KT5823 in control myocytes, but not in the arrest group, indicating reduced involvement of cGMP protein kinase. Multiple proteins were specifically phosphorylated when cGMP was present, but the degree of phosphorylation was significantly less in myocytes after cardiac arrest. The data suggested that the basal contraction was reduced, but the functional response to 8-Br-cGMP was preserved in myocytes from cardiopulmonary arrested hearts. The results also indicated that the action of cGMP appeared to be mainly through non-cGMP protein kinase pathways in the post-resuscitation heart.  相似文献   

2.
We tested the hypothesis that the effects of myocardial stunning would be reduced by cyclic GMP in rabbit hearts. In three groups of anesthetized open-chest New Zealand white rabbits, myocardial stunning was produced by 15 min of occlusion of the left anterior descending coronary artery followed by 15 min of reperfusion repeated twice. Either control vehicle (saline plus 1% dimethyl sulfoxide) or 8-bromo-cyclic GMP (8-Br-cGMP (10(-4) and 10(-3) M)) was topically applied to the left ventricular surface. Hemodynamic (left ventricular and aortic pressures) and functional parameters (wall thickening, delay in onset of wall thickening, and rate of wall thickening) were determined. Coronary blood flow (microspheres) and O2 extraction (microspectrophotometry) were used to determine myocardial O2 consumption (VO2). Myocardial stunning was observed in the control group through an increased delay in onset of myocardial wall thickening (29 +/- 7 versus 55 +/- 16 ms) and decreased maximal rate of wall thickening (20 +/- 8 versus 11 +/- 3 mm x s(-1)). After treatment with 8-Br-cGMP 10(-4) and 10(-3) M, stunning did not increase the delay (37 +/- 5 versus 39 +/- 7 and 39 +/- 7 versus 28 +/- 8 ms). Myocardial stunning did not significantly alter VO2. 8-Br-cGMP 10(-3) M significantly decreased subepicardial VO2 (6.2 +/- 0.8 versus 3.7 +/- 0.6 mL O2 x min(-1) 100 g(-1)) and insignificantly decreased subendocardial VO2 (8.6 +/- 0.9 versus 6.3 +/- 1.2 mL O2 x min(-1) x 100 g(-1)) when compared with the vehicle-treated rabbits. We conclude that increasing cyclic GMP reduced the effects of myocardial stunning in the rabbit heart by ameliorating the delay in onset of wall thickening and decreasing the local O2 costs in the stunned region.  相似文献   

3.
Zhang Q  Scholz PM  He Y  Tse J  Weiss HR 《Cell calcium》2005,37(3):259-266
We tested the hypothesis that cGMP-induced reductions in cardiac myocyte function were related to activation of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) and cGMP-dependent phosphorylation of phospholamban. Ventricular myocyte function was measured using a video edge detector (n = 11 rabbits). Thapsigargin (TG) or cyclopiazonic acid (CPA) were used to inhibit SERCA. 8-Bromo-cGMP was added at 10(-6), 10(-5) M followed by TG 10(-8) M or KT5823 (cGMP-protein kinase inhibitor, 10(-6) M) prior to TG or CPA. Cyclic GMP-dependent protein phosphorylation and immunoblotting with anti-phospholamban antibody were examined. TG 10(-8) M significantly increased percent shortening (from 6.6+/-0.7 to 9.1+/-1.3%). Cyclic GMP 10(-5) M significantly decreased cell shortening from 9.3+/-0.9 to 5.1+/-0.6%. This was partially reversed by KT5823 (5.1+/-0.6 to 8.2+/-1.4%) suggesting that negative functional effects of cGMP were partially through the cGMP-dependent protein kinase. Addition of TG after cGMP also reduced the negative effects of cGMP on myocyte shortening suggesting involvement of SERCA in cGMP signaling. TG after cGMP and KT5823 treatment did not alter myocyte contractility (8.2+/-1.4 to 7.2+/-1.3%). CPA had similar effects as those of TG. Protein phosphorylation and immunoblotting showed that phospholamban was a target of the cGMP protein kinase. These results indicated that the cyclic GMP-induced reductions in myocyte function were partially mediated through the action of SERCA. It further suggested that cGMP signaling affects myocyte function through phosphorylation of phospholamban which regulates SERCA activity.  相似文献   

4.
Cyclic nucleotides play a central role in the modulation of ion channels in a variety of tissues, including the heart. In order to determine the possible role of cyclic GMP (cGMP) in the regulation of the background K channel activity of cardiac cells, the effect of 8-Br-cGMP on the inwardly-rectifying K channels of cultured ventricular myocytes from embryonic chick hearts was examined. 8-Br-cGMP (10-4 to 10-3 M) inhibited these single channel currents within 3 to 10 min. Spontaneous recovery of the currents occurred with prolonged ( 15 min) exposure to 8-Br-cGMP, but this recovery was accompanied by altered channel behavior. Thus, a new long-lasting open state of the channel appeared, in addition to the open state observed prior to 8-Br-cGMP addition. Superfusion of the cells with the muscarinic agonist carbamylcholine (10-5 M) also resulted in inhibition of the currents, which suggests that the cGMP-mediated inhibition of these channels may occur under physiological conditions. Thus, it appears that cGMP may be an important modulator of the background K conductance (and excitability) of cardiac cells.  相似文献   

5.
Katz E  Zhang Q  Weiss HR  Scholz PM 《Peptides》2006,27(9):2276-2283
Brain natriuretic peptide (BNP) affects the regulation of myocardial metabolism through the production of cGMP and these effects may be altered by cardiac hypertrophy. We tested the hypothesis that BNP would cause decreased metabolism and function in the heart and cardiac myocytes by increasing cGMP and that these effects would be disrupted after thyroxine-induced cardiac hypertrophy (T4). Open-chest control and T4 rabbits were instrumented to determine local effects of epicardial BNP (10(-3) M). Function of isolated cardiac myocytes was examined with BNP (10(-8)-10(-7) M) with or without KT5823 (10(-6) M, cGMP protein kinase inhibitor). Cyclic GMP levels were measured in myocytes. In open-chest controls, O2 consumption was reduced in the BNP area of the subepicardium (6.6+/-1.3 ml O2/min/100 g versus 8.9+/-1.4 ml O2/min/100 g) and subendocardium (9.4+/-1.3 versus 11.3+/-0.99). In T4 animals, functional and metabolic rates were higher than controls, but there was no difference between BNP-treated and untreated areas. In isolated control myocytes, BNP (10(-7) M) reduced percent shortening (PSH) from 6.5+/-0.6 to 4.3+/-0.4%. With KT5823 there was no effect of BNP on PSH. In T4 myocytes, BNP had no effect on PSH. In control myocytes, BNP caused cGMP levels to rise from 279+/-8 to 584+/-14 fmol/10(5) cells. In T4 myocytes, baseline cGMP levels were lower (117+/-2 l) and were not significantly increased by BNP. Thus, BNP caused decreased metabolism and function while increasing cGMP in control. These effects were lost after T4 due to lack of cGMP production. These data indicated that the effects of BNP on heart function operated through a cGMP-dependent mechanism, and that this mechanism was disrupted in T4-induced cardiac hypertrophy.  相似文献   

6.
We tested the hypothesis that the negative functional effects of cyclic GMP on cardiac myocytes were mediated through phospholamban (PLB) and activation of sarcoplasmic reticulum Ca(2+)-ATPase. Using ventricular myocytes from wild type (WT, n=10) and PLB knockout (PLB-KO, n=10) mouse hearts, functional changes were measured using a video edge detector at baseline and after 10(-6), 10(-5)M 8-bromo-cyclic GMP (cGMP), 10(-8), 10(-7)M C-type natriuretic peptide (CNP), or 10(-6), 10(-5)M S-nitroso-N-acetyl-penicillamine (SNAP, nitric oxide donor). Changes in cytosolic Ca(2+) concentration were assessed in fura 2-loaded WT and PLB-KO myocytes. Cyclic GMP dependent phosphorylation analysis was also performed in WT and PLB-KO myocytes. 8-bromo-cGMP 10(-5)M caused a significant decrease in %shortening (3.6+/-0.2% to 2.3+/-0.1%) in WT, but little change in PLB-KO myocytes (3.4+/-0.1% to 3.2+/-0.2%). Similarly, CNP and SNAP reduced %shortening of WT, but not PLB-KO myocyte. Changes in other contractile parameters such as maximum rate of shortening and relaxation were consistent with the changes in % shortening. Intracellular Ca(2+) transients changed similarly to cell contractility in WT and PLB-KO myocytes treated with cGMP and CNP; i.e. Ca(2+) transients decreased with cGMP or CNP in WT myocytes, but were unchanged in PLB-KO myocytes. cGMP dependent phosphorylation analysis showed that some proteins were phosphorylated by cGMP to a lesser extent in PLB-KO compared with WT myocytes, suggesting impaired cGMP-kinase function in PLB-KO cardiac myocytes. These results indicated that cGMP-induced reductions in cardiac myocyte function were at least partially mediated through the action of phospholamban.  相似文献   

7.
血管钠肽抑制异丙肾上腺素增强的大鼠心肌细胞钙瞬变   总被引:2,自引:0,他引:2  
Guo HT  Zhu MZ  Zhang RH  Bi H  Zhang B  Zhang HF  Yu J  Lu SY  Pei JM 《生理学报》2004,56(3):335-340
采用光谱荧光法研究血管钠肽(vasonatrin peptide,VNP)对心肌细胞内钙瞬变的作用及其机制,观察钠尿肽鸟苷酸环化酶(guanylate cyclase,GC)受体的特异性阻断剂(HS-142-1)、8-溴-环磷酸鸟苷(8-Br-cGMP)和镁蓝(methylene blue,MB)对心肌细胞内钙瞬变的影响。结果显示,异丙肾上腺素(isoproterenol,Iso)(10~(-10)~10~(-6)mol/L)可剂量依赖性地引起心肌细胞内钙瞬变增强,相对于对照组分别增强(13±8)%(P>0.05)、(26±13)%(P<0.05)、(66±10)%(P<0.01)、(150±10)%(P<0.01)和(300±25)%(P<0.01)。此效应可被β肾上腺素受体阻断剂普萘洛尔(10~(-6)mol/L)所阻断。VNP(10~(-10)~10~(-6)mol/L)可剂量依赖性地抑制Iso(10~(-8)mol/L)引起的心肌细胞内钙瞬变幅值的升高,相对于Iso(10~(-8)mol/L)分别减弱(99±3)%(P>0.05)、(96±2)%(P<0.05)、(84±6)%(P<0.01)、(66±3)%(P<0.01)和(62±3)%(P<0.01)。8-Br-cGMP(10~(-7)~10~(-3)mol/L)也可剂量依赖性地抑制Iso(10~(-8)mol/L)引起心肌细胞内钙瞬变的增强。HS-142-1(2×10~(-5)mol/L)使VNP的作用几乎完全消失。MB是GC的抑制剂,10~(-5)mol/L MB不但使VNP的作用完全消失,而且增强Iso对心肌细胞内钙瞬变的效应。VNP和HS-142-1本身对心肌细胞内钙瞬变无显著影响。而MB使心  相似文献   

8.
Cyclic nucleotides play a central role in the modulation of ion channels in a variety of tissues, including the heart. In order to determine the possible role of cyclic GMP (cGMP) in the regulation of the background K channel activity of cardiac cells, the effect of 8-Br-cGMP on the inwardly-rectifying K channels of cultured ventricular myocytes from embryonic chick hearts was examined. 8-Br-cGMP (10(-4) to 10(-3) M) inhibited these single channel currents within 3 to 10 min. Spontaneous recovery of the currents occurred with prolonged (greater than or equal to 15 min) exposure to 8-Br-cGMP, but this recovery was accompanied by altered channel behavior. Thus, a new long-lasting open state of the channel appeared, in addition to the open state observed prior to 8-Br-cGMP addition. Superfusion of the cells with the muscarinic agonist carbamylcholine (10(-5) M) also resulted in inhibition of the currents, which suggests that the cGMP-mediated inhibition of these channels may occur under physiological conditions. Thus, it appears that cGMP may be an important modulator of the background K conductance (and excitability) of cardiac cells.  相似文献   

9.
Excessive excitatory action of glutamate and nitric oxide (NO) has been implicated in degeneration of striatal neurons. Evidence had been provided that Na+K+-ATPase might be involved in this process. Here we investigated whether glutamate-regulated messengers, such as NO and cyclic GMP, could modulate the activity of membrane Na+K+-ATPase. Our results demonstrated that NO donors sodium nitroprusside (SNP at 30 and 300 microM) and S-nitroso-N-acetylpenicillamine (SNAP at 200 microM) increased alpha2,3Na+K+-ATPase activity which was blocked by the NO chelator, haemoglobin and was independent of [Na+]. This regulation was associated with cGMP synthesis and mimicked by glutamate (300 microM) and 8-Br-cyclic GMP (4 mM). 8-Br-cGMP-induced stimulation of Na+K+-ATPase activity could be blocked by KT5823 (an inhibitor of cGMP-dependent protein kinase, PKG), but not by KT5720 (an inhibitor of cAMP-dependent protein kinase, PKA). N-Methyl-D-aspartate (NMDA) receptors appeared to be involved in the effect of glutamate, since MK-801 (NMDA receptor antagonist) produced a partial reduction in glutamate-induced activation of the enzyme. MK-801 was not synergistic to L-NAME (NOS inhibitor), suggesting that glutamate stimulates the NMDA-NOS pathway to activate alpha2,3 Na+K+-ATPase in rat striatum. This regulation was associated with cyclic GMP (but not cyclic AMP) synthesis. These data indicate the existence, in vitro, of a regulatory pathway by which glutamate, acting through NO and cGMP, can cause alterations in striatal alpha2,3 Na+K+-ATPase activity.  相似文献   

10.
We investigated the effect of angiotensin II on intracellular cyclic GMP content and neurite outgrowth as an indicator of cell differentiation in PC12 W cells. Neurite outgrowth was examined by phase-contrast microscopy. Outgrown neurites were classified as small, medium and large, and were expressed as neurites per 100 cells. Angiotensin II (10-7 m) increased the outgrowth of medium and large neurites by mean +/- SEM 20.2 +/- 2.3 and 6.6 +/- 1.4 compared with 1.66 +/- 0.5 and 0.1 +/- 0.06 neurites per 100 cells in control. Cellular cyclic GMP content increased by 50-250% with angiotensin II at concentrations of 10-6-10-4 m. Both blockade of AT2 receptors and of nitric oxide synthase markedly reduced angiotensin II-induced neurite outgrowth and cyclic GMP production. In contrast, B2 receptor blockade had no effect or even increased these angiotensin II effects. Sodium nitroprusside and 8-bromo-cyclic GMP both mimicked the effects of angiotensin II on cell differentiation. The protein kinase G inhibitor KT-5823 inhibited the neurite outgrowth induced by both angiotensin II and 8-bromo-cyclic GMP. Our results demonstrate that angiotensin II can stimulate cell differentiation in PC12 W cells by nitric oxide-related and cyclic GMP-dependent mechanisms. The effects of angiotensin II on cell differentiation and cyclic GMP production were mediated via the AT2 receptor and further enhanced by bradykinin B2 receptor blockade.  相似文献   

11.
The aims of this study were to determine whether preconditioning blocks cardiocyte apoptosis and to determine the role of mitochondrial ATP-sensitive K(+) (K(ATP)) channels and the protein kinase C epsilon-isoform (PKC-epsilon) in this effect. Ventricular myocytes from 10-day-old chick embryos were used. In the control series, 10 h of simulated ischemia followed by 12 h of reoxygenation resulted in 42 +/- 3% apoptosis (n = 8). These results were consistent with DNA laddering and TdT-mediated dUTP nick-end labeling (TUNEL) assay. Preconditioning, elicited with three cycles of 1 min of ischemia separated by 5 min of reoxygenation before subjection to prolonged simulated ischemia, markedly attenuated the apoptotic process (28 +/- 4%, n = 8). The selective mitochondrial K(ATP) channel opener diazoxide (400 micromol/l), given before ischemia, mimicked preconditioning effects to prevent apoptosis (22 +/- 4%, n = 6). Pretreatment with 5-hydroxydecanoate (100 micromol/l), a selective mitochondrial K(ATP) channel blocker, abolished preconditioning (42 +/- 2%, n = 6). In addition, the effects of preconditioning and diazoxide were blocked with the specific PKC inhibitors G?-6976 (0.1 micromol/l) or chelerythrine (4 micromol/l), given at simulated ischemia and reoxygenation. Furthermore, preconditioning and diazoxide selectively activated PKC-epsilon in the particulate fraction before simulated ischemia without effect on the total fraction, cytosolic fraction, and PKC delta-isoform. The specific PKC activator phorbol 12-myristate 13-acetate (0.2 micromol/l), added during simulated ischemia and reoxygenation, mimicked preconditioning to block apoptosis. Opening mitochondrial K(ATP) channels blocks cardiocyte apoptosis via activating PKC-epsilon in cultured ventricular myocytes. Through this signal transduction, preconditioning blocks apoptosis and preserves cardiac function in ischemia-reperfusion.  相似文献   

12.
To investigate cardiac stunning, we recorded intracellular [Ca(2+)], contractions, and electrical activity in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion. After equilibration, ischemia was simulated by exposing myocytes to hypoxia, acidosis, hyperkalemia, hypercapnia, lactate accumulation, and substrate deprivation for 30 min at 37 degrees C. Reperfusion was simulated by exposure to Tyrode solution. Field-stimulated myocytes exhibited stunning upon reperfusion. By 10 min of reperfusion, contraction amplitude decreased to 43.0 +/- 5.5% of preischemic values (n = 15, P < 0.05), although action potential configuration and sarcoplasmic reticulum Ca(2+) stores, assessed with caffeine, were normal. Diastolic [Ca(2+)] and Ca(2+) transients (fura 2) were also normal in stunned myocytes. In voltage-clamped cells, peak L-type Ca(2+) current was reduced to 47.4 +/- 4.5% of preischemic values at 10 min of reperfusion (n = 21, P < 0.05). Contractions elicited by Ca(2+)-induced Ca(2+) release and the voltage-sensitive release mechanism were both depressed in reperfusion. Our observations suggest that stunning is associated with reduced L-type Ca(2+) current but that alterations in Ca(2+) homeostasis and release are not directly responsible for stunning.  相似文献   

13.
C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch-clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [I(K (V))] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1+/-1.6 % (n=7, P<0.05), 78.4+/-2.6 % (n=10, P<0.01) and 67.7+/-2.3 % (n=14, P<0.01), at concentrations of 0.01 micromol/l, 0.1 micromol/l and 1 micromol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 micromol/l LY83583, a guanylate cyclase inhibitor, the 1 ?micromol/l CNP-induced inhibition of I(K (V)) was significantly impaired but when the cells were preincubated with 0.1 micromol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 micromol/l CNP-induced inhibition of I(K (V)) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on I(K (V)). CNP-induced inhibition of I(K (V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibits the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig.  相似文献   

14.
We tested the hypothesis that the negative functional effects of cyclic GMP (cGMP) would be greater after increasing cyclic AMP (cAMP), because of the action of cGMP-affected cAMP phosphodiesterases in cardiac myocytes and that this effect would be altered in left ventricular hypertrophy (LVH) produced by aortic valve plication. Myocyte shortening data were collected using a video edge detector, and O2 consumption was measured by O2 electrodes during stimulation (5 ms, 1 Hz, in 2 mM Ca2+) from control (n = 7) and LVH (n = 7) dog ventricular myocytes. cAMP and cGMP were determined by a competitive binding assay. cAMP was increased by forskolin and milrinone (10(-6) M). cGMP was increased with zaprinast and decreased by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxilin-1-one (ODQ) both at 10(-6) and 10(-4) M, with and without forskolin or forskolin + milrinone. Zaprinast significantly decreased percent shortening in control (9 +/- 1 to 7 +/- 1%) and LVH (10 +/- 1 to 7 +/- 1%) myocytes. It increased cGMP in control (36 +/- 5 to 52 +/- 7 fmol/10(5) myocytes) and from the significantly higher baseline value in LVH (71 +/- 12 to 104 +/- 18 fmol/10(5) myocytes). ODQ increased myocyte function and decreased cGMP levels in control and LVH myocytes. Forskolin + milrinone increased cAMP levels in control (6 +/- 1 to 15 +/- 2 pmol/10(5) myocytes) and LVH (8 +/- 1 to 18 +/- 2 pmol/10(5) myocytes) myocytes, as did forskolin alone. They also significantly increased percent shortening. There were significant negative functional effects of zaprinast after forskolin + milrinone in control (15 +/- 2 to 9 +/- 1%), which were greater than zaprinast alone, and LVH (12 +/- 1 to 9 +/- 1%). This was associated with an increase in cGMP and a reduction in the increased cAMP induced by forskolin or milrinone. ODQ did not further increase function after forskolin or milrinone in control myocytes, despite lowering cGMP. However, it prevented the forskolin and milrinone induced increase in cAMP. In hypertrophy, ODQ lowered cGMP and increased function after forskolin. ODQ did not affect cAMP after forskolin and milrinone in LVH. Thus, the level of cGMP was inversely correlated with myocyte function. When cAMP levels were elevated, cGMP was still inversely correlated with myocyte function. This was, in part, related to alterations in cAMP. The interaction between cGMP and cAMP was altered in LVH myocytes.  相似文献   

15.
We hypothesized that myocardial stunning would be reversed through increased cyclic GMP caused by nitroprusside, and that this would be accomplished through a decreased proportion of regional work during diastole. Hearts were instrumented to measure left ventricular pressure, and regional myocardial mechanics were recorded using a miniature force transducer and ultrasonic dimension crystals in eight open-chest anesthetized dogs. Following baseline (CON), the left anterior descending coronary artery (LAD) was occluded for 15 min, followed by a 30-min recovery (STUN). Then intracoronary LAD infusion of sodium nitroprusside (NP) (4 microg/kg/ min) was begun. The time delay (msec) to regional shortening increased significantly from 18+/-13 to 73+/-13 following stunning, but was reduced to 49+/-18 by NP. Total regional work (g*mm/min) at baseline (1368+/-401 CON) was unchanged with stunning (1320+/-333 STUN), but reduced (961+/-240) following NP. Time to peak force development (msec) increased significantly with stunning from 284+/-13 (CON) to 333+/-11 (STUN), but was reduced to 269+/-12 following NP. The percentage work during systole was reduced from 96%+/-2% (CON) to 77%+/-7% (STUN), but returned to 98%+/-1% with NP. Regional O2 consumption was unaffected by either treatment. Cyclic GMP was unchanged by stunning (2.9+/-0.3-2.9+/-0.4 pmol/g) but increased significantly with NP (4.6+/-0.6). These data indicated that regional myocardial stunning could be attenuated by nitroprusside, which increased cyclic GMP, decreased contractile delay, increased the proportion of work done during systole, and reduced time of shortening.  相似文献   

16.
Baseline function and signal transduction are depressed in hearts with hypertrophic failure. We tested the hypothesis that the effects of cGMP and its interaction with cAMP would be reduced in cardiac myocytes from hypertrophic failing hearts. Ventricular myocytes were isolated from control dogs, dogs with aortic valve stenosis hypertrophy, and dogs with pacing hypertrophic failure. Myocyte function was measured using a video edge detector. Cell contraction data were obtained at baseline, with 8-bromo-cGMP (10(-7), 10(-6), and 10(-5) M), with erythro-9-(2-hydroxy-3-nonyl)adenine [EHNA; a cAMP phosphodiesterase (PDE(2)) inhibitor] plus 8-bromo-cGMP, or milrinone (a PDE(3) inhibitor) plus 8-bromo-cGMP. Baseline percent shortening and maximal rates of shortening (R(max)) and relaxation were slightly reduced in hypertrophic myocytes and were significantly lower in failing myocytes (R(max): control dogs, 95.3 +/- 17.3; hypertrophy dogs, 88.2 +/- 5.5; failure dogs, 53.2 +/- 6.4 mum/s). 8-Bromo-cGMP dose dependently reduced myocyte function in all groups. However, EHNA (10(-6) M) and milrinone (10(-6) M) significantly reduced the negative effects of cGMP on cell contractility in control and hypertrophy but not in failing myocytes (R(max) for control dogs: cGMP, -46%; +EHNA, -21%; +milrinone, -19%; for hypertrophy dogs: cGMP, -40%; +EHNA, -13%; +milrinone, -20%; for failure dogs: cGMP, -40%; +EHNA, -29%; +milrinone, -32%). Both combinations of EHNA-cGMP and milrinone-cGMP significantly increased intracellular cAMP in control, hypertrophic, and failing myocytes. These data indicated that the cGMP signaling pathway was preserved in hypertrophic failing cardiac myocytes. However, the interaction of cGMP with the cAMP signaling pathway was impaired in these failing myocytes.  相似文献   

17.
Sildenafil, a potent inhibitor of phosphodiesterase-5 (PDE-5) induces powerful protection against myocardial ischemia-reperfusion injury. PDE-5 inhibition increases cGMP levels that activate cGMP-dependent protein kinase (PKG). However, the cause and effect relationship of PKG in sildenafil-induced cardioprotection and the downstream targets of PKG remain unclear. Adult ventricular myocytes were treated with sildenafil and subjected to simulated ischemia and reoxygenation. Sildenafil treatment significantly decreased cardiomyocyte necrosis and apoptosis. The PKG inhibitors, KT5823, guanosine 3',5'-cyclic monophosphorothioate, 8-(4-chloro-phenylthio) (R(p)-8-pCPT-cGMPs), or DT-2 blocked the anti-necrotic and anti-apoptotic effect of sildenafil. Selective knockdown of PKG in cardiomyocytes with adenoviral vector containing short hairpin RNA of PKG also abolished sildenafil-induced protection. Furthermore, intra-coronary infusion of sildenafil in Langendorff-isolated mouse hearts prior to ischemia-reperfusion significantly reduced myocardial infarct size after 20 min ischemia and 30 min reperfusion, which was abrogated by KT5823. Sildenafil significantly increased PKG activity in intact hearts and cardiomyocytes. Sildenafil also enhanced the Bcl-2/Bax ratio, phosphorylation of Akt, ERK1/2, and glycogen synthase kinase 3beta. All these changes (except Akt phosphorylation) were significantly blocked by KT5823 and short hairpin RNA of PKG. These studies provide the first evidence for an essential role of PKG in sildenafil-induced cardioprotection. Moreover, our results demonstrate that sildenafil activates a PKG-dependent novel signaling cascade that involves activation of ERK and inhibition of glycogen synthase kinase 3beta leading to cytoprotection.  相似文献   

18.
Abstract: Stimulation of several second messenger pathways induces the expression of immediate early genes such as c- fos , c- jun , junB , and junD , but little is known about their induction via the stimulation of the cyclic GMP pathway. Here we looked at the expression of early genes in pheochromocytoma PC12 cells after activation of cytosolic guanylate cyclase by sodium nitroprusside. This compound spontaneously releases NO, a molecule known to be involved in cell communication. We found that expression of c- fos and junB but not of c- jun or junD is increased upon activation of cyclic GMP pathway. c- fos mRNA expression was the most activated (fourfold at 30 min), whereas junB response was more modest (2.2-fold activation at 60 min). Nuclear extracts of stimulated cells show increased binding capacity to the AP1 binding site consistent with the dose-response curve. The activating effect of nitroprusside could be reproduced by dipyridamole, a selective cyclic GMP phosphodiesterase inhibitor and by 8- p -chlorophenylthio-cyclic GMP, a permeant selective cyclic GMP-dependent protein kinase activator, and abolished by KT5823, an inhibitor of that kinase. The results show that NO promotes early gene activation and AP1 binding enhancement through the stimulation of the cyclic GMP pathway.  相似文献   

19.
Leptin is a regulator of body weight and affects nitric oxide (NO) production. This study was designed to determine whether the myocardial NO-cGMP signal transduction system was altered in leptin-deficient obese mice. Contractile function, guanylyl cyclase activity, and cGMP-dependent protein phosphorylation were assessed in ventricular myocytes isolated from genetically obese (B6.V-Lepob) and age-matched lean (C57BL/6J) mice. There were no differences in baseline contraction between the lean and obese groups. After stimulation with the NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10-6 and 10-5 M) or a membrane-permeable cGMP analog 8-bromo-cGMP (8-Br-cGMP, 10(-6) and 10(-5) M), cell contractility was depressed. However, 8-Br-cGMP had significantly greater effects in obese mice than in lean controls with percent shortening reduced by 47 vs. 39% and maximal rate of shortening decreased by 46 vs. 36%. The negative effects of SNAP were similar between the two groups. Soluble guanylyl cyclase activity was not attenuated. This suggests that the activity of the cGMP-independent NO pathway may be enhanced in obesity. The phosphorylated protein profile of cGMP-dependent protein kinase showed that four proteins were more intensively phosphorylated in obese mice, which suggests an explanation for the enhanced effect of cGMP. These results indicate that the NO-cGMP signaling pathway was significantly altered in ventricular myocytes from the leptin-deficient obese mouse model.  相似文献   

20.
Davidov T  Weiss HR  Tse J  Scholz PM 《Life sciences》2006,79(17):1674-1680
The consequences of chronic nitric oxide synthase (NOS) blockade on the myocardial metabolic and guanylyl cyclase stimulatory effects of exogenous nitric oxide (NO) were determined. Thirty-three anesthetized open-chest rabbits were randomized into four groups: control, NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4 )M), NOS blocking agent N(G)-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg/day) for 10 days followed by a 24 hour washout and L-NAME for 10 days followed by a 24 hour washout plus SNAP. Myocardial O(2) consumption was determined from coronary flow (microspheres) and O(2) extraction (microspectrophotometry). Cyclic GMP and guanylyl cyclase activity were determined by radioimmunoassay. There were no baseline metabolic, functional or hemodynamic differences between control and L-NAME treated rabbits. SNAP in controls caused a reduction in O(2) consumption (SNAP 5.9+/-0.6 vs. control 8.4+/-0.8 ml O(2)/min/100 g) and a rise in cyclic GMP (SNAP 18.3+/-3.8 vs. control 10.4+/-0.9 pmol/g). After chronic L-NAME treatment, SNAP caused no significant changes in O(2) consumption (SNAP 7.1+/-0.8 vs. control 6.4+/-0.7) or cyclic GMP (SNAP 14.2+/-1.8 vs. control 12.1+/-1.3). In controls, guanylyl cyclase activity was significantly stimulated by SNAP (216.7+/-20.0 SNAP vs. 34.4+/-2.5 pmol/mg/min base), while this increase was blunted after L-NAME (115.9+/-24.5 SNAP vs. 24.9+/-4.7 base). These results demonstrated that chronic NOS blockade followed by washout blunts the response to exogenous NO, with little effect on cyclic GMP or myocardial O(2) consumption. This was related to reduced guanylyl cyclase activity after chronic L-NAME. These results suggest that, unlike many receptor systems, the NO-cyclic GMP signal transduction system becomes downregulated upon chronic inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号