首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila melanogaster infected with Mycobacterium marinum suffer metabolic wasting similar to that seen in humans suffering from tuberculosis. This wasting is linked to insulin signaling and hastens host death.  相似文献   

2.
蒋德梅  谢建平 《昆虫学报》2009,52(10):1163-1170
耐药性、持续感染以及与HIV病毒的共感染等诸多因素导致一度得到控制的结核病死灰复燃, 有效控制日益严峻的结核病迫切需要深入认识其致病菌——结核分枝杆菌Mycobacterium tuberculosis的基础生物学特性, 以及宿主相应的免疫控制机理。目前尚无一个动物模型能够同时回答这些关键问题, 而利用多种动物模型有望从不同角度回答上述问题, 普遍认为果蝇Drosophila 是比较理想的研究结核病天然免疫的简易模式动物之一。本文综述了果蝇免疫研究的最新进展, 包括免疫途径及其新成员与负调控子, 重点总结了用海分枝菌杆菌M. marinum、偶发分枝杆菌M. fortuitum和耻垢分枝杆菌M. smegmatis等分枝杆菌感染果蝇的新发现, 其中包括感染期间不诱导抗菌肽表达, 多个宿主因子(如CD36家族成员和ESCRT)参与了应答, 鉴定出具有杀灭分支杆菌作用的β-己糖酰胺酶, 感染期间能量代谢相关基因差异表达等。这些工作为利用果蝇模型快速筛选治疗结核病的新药物靶标和药物先导物提供了思路。  相似文献   

3.
4.
5.
Mycobacterium marinum is a close relative of the obligate human pathogen Mycobacterium tuberculosis. As with M. tuberculosis, M. marinum causes intracellular infection of poikilothermic vertebrates and skin infection in humans. It is considered a valid model organism for the study of intracellular pathogenesis of mycobacteria. Low transformation efficiencies for this species have precluded approaches using mutant libraries in pathogenesis studies. We have adapted the conditionally replicating mycobacteriophage phAE94, originally developed as a transposon mutagenesis tool for M. tuberculosis, to meet the specific requirements of M. marinum. Conditions permissive for phage replication in M. tuberculosis facilitated highly efficient transposon delivery in M. marinum. Using this technique we succeeded in generating a representative mutant library of this species, and we conclude that TM4-derived mycobacteriophages are temperature-independent suicide vectors for M. marinum.  相似文献   

6.
A thorough understanding of Mycobacterium tuberculosis pathogenesis in humans has been elusive in part because of imperfect surrogate laboratory hosts, each with its own idiosyncrasies. Mycobacterium marinum is the closest genetic relative of the M. tuberculosis complex and is a natural pathogen of ectotherms. In this review, we present evidence that the similar genetic programmes of M. marinum and M. tuberculosis and the corresponding host immune responses reveal a conserved skeleton of Mycobacterium host–pathogen interactions. While both species have made niche-specific refinements, an essential framework has persisted. We highlight genetic comparisons of the two organisms and studies of M. marinum in the developing zebrafish. By pairing M. marinum with the simplified immune system of zebrafish embryos, many of the defining mechanisms of mycobacterial pathogenesis can be distilled and investigated in a tractable host/pathogen pair.  相似文献   

7.
斑马鱼-海分枝杆菌模型研究对结核病致病机理的启示   总被引:1,自引:0,他引:1  
全世界约三分之一的人口感染过结核分枝杆菌,其导致的结核病仍然是全球公共卫生的严重威胁。结核菌是典型的胞内致病菌。结核菌的致病性与其成功逃避和利用宿主免疫应答等密切相关。控制结核病需要深入了解致病菌和宿主之间的相互作用。不同的动物模型是揭示致病菌-宿主相互作用的关键。海分枝杆菌-斑马鱼模型是最近才得以发展并获得了不少新见解的研究系统之一。本文总结了该模型揭示的海分枝杆菌毒力因子Erp、Esx-1、pmiA、Mel1和Mel2、KasB等,以及该模型的优缺点。这些结果为大动物模型研究和深入了解结核分枝杆菌感染人体的致病机理提供了线索。  相似文献   

8.
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic β cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.Key words: Drosophila melanogaster, insulin-producing cells (IPCs), drosophila insulin-like peptides (DILPs), type 2 diabetes, oral glucose tolerance test (OGTT), insulin sensitivity, energy metabolism, life span  相似文献   

9.
The majority of slow-growing mycobacteria have a functional oxyR, the central regulator of the bacterial oxidative stress response. In contrast, this gene has been inactivated during the evolution of Mycobacterium tuberculosis. Here we inactivated the oxyR gene in Mycobacterium marinum, an organism used to model M. tuberculosis pathogenesis. Inactivation of oxyR abrogated induction of ahpC, a gene encoding alkylhydroperoxide reductase, normally activated upon peroxide challenge. The absence of oxyR also resulted in increased sensitivity to the front-line antituberculosis drug isoniazid. Inactivation of oxyR in M. marinum did not affect either virulence in a fish infection model or survival in human macrophages. Our findings demonstrate, at the genetic and molecular levels, a direct role for OxyR in ahpC regulation in response to oxidative stress. Our study also indicates that oxyR is not critical for virulence in M. marinum. However, oxyR inactivation confers increased sensitivity to isonicotinic acid hydrazide, suggesting that the natural loss of oxyR in the tubercle bacillus contributes to the unusually high sensitivity of M. tuberculosis to isoniazid.  相似文献   

10.
Mycobacterium marinum, a close relative of Mycobacterium tuberculosis, provides a useful model to study the pathogenesis of tuberculosis in genetically tractable model organisms. Using the amoeba Dictyostelium discoideum as a host, we show that expression of the M. marinum protein MAG24-1 is crucial to interfere with phagosome maturation. We find that two host proteins - the flotillin homologue vacuolin and p80, a predicted copper transporter - accumulate at the vacuole during pathogen replication until it finally ruptures and the bacteria are released into the host cytosol. Flotillin-1 accumulation at the replication niche and its rupture were also observed in human peripheral blood monocytes. By infecting various Dictyostelium mutants, we show that the absence of one of the two Dictyostelium vacuolin isoforms renders the host more immune to M. marinum. Conversely, the absence of the small GTPase RacH renders the host more susceptible to M. marinum proliferation but inhibits its cell-to-cell spreading.  相似文献   

11.
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic b cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.  相似文献   

12.
Initiation and maintenance of infection by mycobacteria in susceptible hosts are not well understood. A screen of Mycobacterium marinum transposon mutant library led to isolation of eight mutants that failed to cause haemolysis, all of which had transposon insertions in genes homologous to a region between Rv3866 and Rv3881c in Mycobacterium tuberculosis, which encompasses RD1 (Rv3871-Rv3879c), a known virulence gene cluster. The M. marinum mutants showed decreased virulence in vivo and failed to secrete ESAT-6, like M. tuberculosis RD1 mutants. M. marinum mutants in genes homologous to Rv3866-Rv3868 also failed to accumulate intracellular ESAT-6, suggesting a possible role for those genes in synthesis or stability of the protein. These transposon mutants and an ESAT-6/CFP-10 deletion mutant all showed reduced cytolysis and cytotoxicity to macrophages and significantly decreased intracellular growth at late stages of the infection only when the cells were infected at low multiplicity of infection, suggesting a defect in spreading. Direct evidence for cell-to-cell spread by wild-type M. marinum was obtained by microscopic detection in macrophage and epithelial monolayers, but the mutants all were defective in this assay. Expression of M. tuberculosis homologues complemented the corresponding M. marinum mutants, emphasizing the functional similarities between M. tuberculosis and M. marinum genes in this region that we designate extRD1 (extended RD1). We suggest that diminished membranolytic activity and defective spreading is a mechanism for the attenuation of the extRD1 mutants. These results extend recent findings on the genomic boundaries and functions of M. tuberculosis RD1 and establish a molecular cellular basis for the role that extRD1 plays in mycobacterial virulence. Disruption of the M. marinum homologue of Rv3881c, not previously implicated in virulence, led to a much more attenuated phenotype in macrophages and in vivo, suggesting that this gene plays additional roles in M. marinum survival in the host.  相似文献   

13.
Confronting physiology: how do infected flies die?   总被引:1,自引:0,他引:1  
Fruit fly immunology is on the verge of an exciting new path. The fruit fly has served as a strong model for innate immune responses; the field is now expanding to use the fruit fly to study pathogenesis. We argue here that, to understand pathogenesis in the fly, we need to understand pathology - and to understand pathology, we need to confront physiology with molecular tools. When flies are infected with a pathogen, they get sick. We group the events following infection into three categories: innate immune responses (defence mechanisms by which the fly attempts to kill or neutralize the microbe, some of which can themselves cause harm to the fly); microbial virulence (mechanisms by which the microbe evades the immune response); and host pathology (physiologies adversely affected by either the immune response or microbial virulence). We divide this review into sections mirroring these categories. The molecular study of infection in the fruit fly has focused on the first category, has begun to explore the second, and has yet to tap the full potential of the fly regarding the third.  相似文献   

14.
Sleep length and metabolic dysfunction are correlated, but the causal relationship between these processes is unclear. Octopamine promotes wakefulness in the fly by acting through the insulin-producing cells (IPCs) in the fly brain. To determine if insulin signaling mediates the effects of octopamine on sleep:wake behavior, we assayed flies in which insulin signaling activity was genetically altered. We found that increasing insulin signaling does not promote wake, nor does insulin appear to mediate the wake-promoting effects of octopamine. Octopamine also affects metabolism in invertebrate species, including, as we show here, Drosophila melanogaster. Triglycerides are decreased in mutants with compromised octopamine signaling and elevated in flies with increased activity of octopaminergic neurons. Interestingly, this effect is mediated at least partially by insulin, suggesting that effects of octopamine on metabolism are independent of its effects on sleep. We further investigated the relative contribution of metabolic and sleep phenotypes to the starvation response of flies with altered octopamine signaling. Hyperactivity (indicative of foraging) induced by starvation was elevated in octopamine receptor mutants, despite their high propensity for sleep, indicating that their metabolic state dictates their behavioral response under these conditions. Moreover, flies with increased octopamine signaling do not suppress sleep in response to starvation, even though they are normally hyper-aroused, most likely because of their high triglyceride levels. Together, these data suggest that observed correlations between sleep and metabolic phenotypes can result from shared molecular pathways rather than causality, and environmental conditions can lead to the dominance of one phenotype over the other.  相似文献   

15.
The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX-1-ESX-5). While the role of the ESX-1 and ESX-3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX-5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX-5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX-5 knockout/deletion mutants, inactivating eccA(5), eccD(5), rv1794 and esxM genes or the ppe25-pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX-5-encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD(5) ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD(5) ko and MtbΔppe25-pe19 mutants were found attenuated both in macrophages and in the severe combined immune-deficient mouse infection model. Altogether these findings indicate an essential role of ESX-5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.  相似文献   

16.
Metazoans adapt to changing environmental conditions and to harmful challenges by attenuating growth and metabolic activities systemically. Recent studies in mice and flies indicate that endocrine signaling interactions between insulin/IGF signaling (IIS) and innate immune signaling pathways are critical for this adaptation, yet the temporal and spatial hierarchy of these signaling events remains elusive. Here, we identify and characterize a program of signaling interactions that regulates the systemic response of the Drosophila larva to localized DNA damage. We provide evidence that epidermal DNA damage induces an innate immune response that is kept in check by systemic repression of IIS activity. IIS repression induces NFκB/Relish signaling in the fat body, which is required for recovery of IIS activity in a second phase of the systemic response to DNA damage. This systemic response to localized DNA damage thus coordinates growth and metabolic activities across tissues, ensuring growth homeostasis and survival of the animal.  相似文献   

17.
The ESX-5 secretion system of pathogenic mycobacteria is responsible for the secretion of various PPE and PE-PGRS proteins. To better understand the role of ESX-5 effector proteins in virulence, we analyzed the interactions of Mycobacterium marinum ESX-5 mutant with human macrophages (Mphi). Both wild-type bacteria and the ESX-5 mutant were internalized and the ESX-5 mutation did not affect the escape of mycobacteria from phagolysosomes into the cytosol, as was shown by electron microscopy. However, the ESX-5 mutation strongly effected expression of surface Ags and cytokine secretion. Whereas wild-type M. marinum actively suppressed the induction of appreciable levels of IL-12p40, TNF-alpha, and IL-6, infection with the ESX-5 mutant resulted in strongly induced production of these proinflammatory cytokines. By contrast, infection with M. marinum wild-type strain resulted in a significant induction of IL-1beta production as compared with the ESX-5 mutant. These results show that ESX-5 plays an essential role in the modulation of immune cytokine secretion by human Mphi. Subsequently, we show that an intact ESX-5 secretion system actively suppresses TLR signaling-dependent innate immune cytokine secretion. Together, our results show that ESX-5 substrates, directly or indirectly, strongly modulate the human Mphi response at various critical steps.  相似文献   

18.
The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.  相似文献   

19.
Cricket Paralysis virus (CrPV) is a member of the Dicistroviridae family of RNA viruses, which infect a broad range of insect hosts, including the fruit fly Drosophila melanogaster. Drosophila has emerged as an effective system for studying innate immunity because of its powerful genetic techniques and the high degree of gene and pathway conservation. Intra-abdominal injection of CrPV into adult flies causes a lethal infection that provides a robust assay for the identification of mutants with altered sensitivity to viral infection. To gain insight into the interactions between viruses and the innate immune system, we injected wild type flies with CrPV and observed that antimicrobial peptides (AMPs) were not induced and hemocytes were depleted in the course of infection. To investigate the contribution of conserved immune signaling pathways to antiviral innate immune responses, CrPV was injected into isogenic mutants of the Immune Deficiency (Imd) pathway, which resembles the mammalian Tumor Necrosis Factor Receptor (TNFR) pathway. Loss-of-function mutations in several Imd pathway genes displayed increased sensitivity to CrPV infection and higher CrPV loads. Our data show that antiviral innate immune responses in flies infected with CrPV depend upon hemocytes and signaling through the Imd pathway.  相似文献   

20.
Drosophila melanogaster is widely used to decipher the innate immune system in response to various pathogens. The innate immune response towards persistent virus infections is among the least studied in this model system. We recently discovered a picorna-like virus, the Nora virus which gives rise to persistent and essentially symptom-free infections in Drosophila melanogaster. Here, we have used this virus to study the interaction with its host and with some of the known Drosophila antiviral immune pathways. First, we find a striking variability in the course of the infection, even between flies of the same inbred stock. Some flies are able to clear the Nora virus but not others. This phenomenon seems to be threshold-dependent; flies with a high-titer infection establish stable persistent infections, whereas flies with a lower level of infection are able to clear the virus. Surprisingly, we find that both the clearance of low-level Nora virus infections and the stability of persistent infections are unaffected by mutations in the RNAi pathways. Nora virus infections are also unaffected by mutations in the Toll and Jak-Stat pathways. In these respects, the Nora virus differs from other studied Drosophila RNA viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号