首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface membranes are generally considered as inert and hydrophobic providing a stable physical barrier that anchor proteins and maintain cellular homeostasis between the intra- and the extra-cellular environment. The integral proteins that transverse membranes do so once or multiple times and can function alone or as part of a larger complex. Far from being inert, there is a multiplicity of biophysical factors that drive protein-protein and protein-lipid interactions within membranes that are being increasingly recognised as very important for cellular function. Unravelling these “hot-spots” on the contact surface of transmembrane (TM) proteins and targeting peptides to these sites to interrupt the cohesive interaction between the proteins provides both an enormous challenge and a huge therapeutic potential that as yet remains unrecognized. Indeed, with biopharmaceutical research on the rise, TM peptides may prove a useful innovation. Using the T-cell antigen receptor (TCR) as a model system of multi-subunits interacting at the TM via electrostatic charges the potential for peptides as therapeutic agents to interfere with normal immune responses is discussed. The principles of such can be extended to other similar receptor systems including those involved in cancer or infection.  相似文献   

2.
Adrenergic receptors are integral membrane proteins involved in cellular signalling that belong to the G protein-coupled receptors. Synthetic peptides resembling the putative transmembrane (TM) segments TM4, TM6 and TM7, of the human α2-adrenergic receptor subtype C10 (P08913) and defined lipid vesicles were used to assess protein-lipid interactions that might be relevant to receptor structure/function. P6 peptide contains the hydrophobic core of TM6 plus the N-terminal hydrophilic motif REKR, while peptides P4 and P7 contained just the hydrophobic stretches of TM4 and TM7, respectively. All the peptides increase their helical tendency at moderate concentrations of TFE (30–50%) and in presence of 1,2-dielaidoyl-sn-glycero-3-phosphatidylethanolamine (DEPE) lipids. However, only P6 displays up to 19% of α-helix in the presence of just the DEPE lipids, evidences a transmembrane orientation and stabilizes the Lα lipid phase. Conversely, P4 and P7 peptides form only stable β-sheet structures in DEPE and favour the non-lamellar, inverted hexagonal (HII) phase of DEPE by lowering its phase transition temperature. This study highlights the potential of using synthetic peptides derived from the amino acid sequence in the native proteins as templates to understand the behaviour of the transmembrane segments and underline the importance of interfacial anchoring interactions to meet hydrophobic matching requirements and define membrane organization.  相似文献   

3.
Receptor tyrosine kinases have a single transmembrane (TM) segment that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, mutations within some of these receptors, and recent studies with the epidermal growth factor (EGF) and ErbB2 receptors have indicated that interactions between TM domains do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimerization and activation. One consequence of the importance of these interactions is that short hydrophobic peptides corresponding to these domains should act as specific inhibitors. To test this hypothesis, we constructed expression vectors encoding short fusion peptides encompassing native or mutated TM domains of the EGF, ErbB2, and insulin receptors. In human cell lines overexpressing the wild-type EGF receptor or ErbB2, we observed that the peptides are expressed at the cell surface and that they inhibit specifically the autophosphorylation and signaling pathway of their cognate receptor. Identical results were obtained with peptides chemically synthesized. Mechanism of action involves inhibition of dimerization of the receptors as shown by the lack of effects of mutant nondimerizing sequences, completed by density centrifugation and covalent cross-linking experiments. Our findings stress the role of TM domain interactions in ErbB receptor function, and possibly for other single-spanning membrane proteins.  相似文献   

4.
Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues 90GLALIVAGV98); and (ii) a peptide comprised of the full TM4(85–105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88–100), and then “staple” this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-88VVGLXLIZXGVVV100-KKK-NH2 (X = 2-(4′-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn95 peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88–100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.  相似文献   

5.
Although homo- and heterodimerizations of G protein-coupled receptors (GPCRs) are well documented, GPCR monomers are able to assemble in different ways, thus causing variations in the interactive interface between receptor monomers among different GPCRs. Moreover, the functional consequences of this phenomenon, which remain to be clarified, could be specific for different GPCRs. Synthetic peptides derived from transmembrane (TM) domains can interact with a full-length GPCR, blocking dimer formation and affecting its function. Here we used peptides corresponding to TM helices of bovine rhodopsin (Rho) to investigate the Rho dimer interface and functional consequences of its disruption. Incubation of Rho with TM1, TM2, TM4, and TM5 peptides in rod outer segment (ROS) membranes shifted the resulting detergent-solubilized protein migration through a gel filtration column toward smaller molecular masses with a reduced propensity for dimer formation in a cross-linking reaction. Binding of these TM peptides to Rho was characterized by both mass spectrometry and a label-free assay from which dissociation constants were calculated. A BRET (bioluminescence resonance energy transfer) assay revealed that the physical interaction between Rho molecules expressed in membranes of living cells was blocked by the same four TM peptides identified in our in vitro experiments. Although disruption of the Rho dimer/oligomer had no effect on the rates of G protein activation, binding of Gt to the activated receptor stabilized the dimer. However, TM peptide-induced disruption of dimer/oligomer decreased receptor stability, suggesting that Rho supramolecular organization could be essential for ROS stabilization and receptor trafficking.  相似文献   

6.
Protein-protein interactions within the membrane, partially or fully mediated by transmembrane (TM) domains, are involved in many vital cellular processes. Since the unique feature of the membrane environment enables protein-protein assembly that otherwise is not energetically favored in solution, the structural restrictions involved in the assembly of soluble proteins are not necessarily valid for the assembly of TM domains. Here we used the N-terminal TM domain (Tar-1) of the Escherichia coli aspartate receptor as a model system for examining the stereospecificity of TM-TM interactions in vitro and in vivo in isolated systems, and in the context of the full receptor. For this propose, we synthesized Tar-1 all-l and all-d amino acid TM peptides, a mutant TM peptide and an unrelated TM peptide. The data revealed: (i) Tar-1 all-d specifically associated with Tar-1 all-l within a model lipid membrane, as determined by using fluorescence energy transfer experiments; (ii) Tar-1 all-l and all-d, but not the control peptides, demonstrated a dose-dependant dominant negative effect on the Tar-1 TM homodimerization in the bacterial ToxR assembly system, suggesting a wild-type-like interaction; and most interestingly, (iii) both Tar-1 all-l and all-d showed a remarkable ability to inhibit the chemotaxis response of the full-length receptor, in vivo. Peptide binding to the bacteria was confirmed through confocal imaging, and Western blotting confirmed that ToxR Tar-1 chimera protein levels are not affected by the presence of the exogenous peptides. These findings present the first evidence that an all-d TM domain peptide acts in vivo similarly to its parental all-l peptide and suggest that the dimerization of the TM domains is mainly mediated by side-chain interactions, rather than geometrically fitted conformations. In addition, the study provides a new approach for modifying the function of membrane proteins by proteolysis-free peptides.  相似文献   

7.
8.
Formyl peptide receptor (FPR) mediates a number of important host defense functions. Although studies have been performed on the ligand binding site of FPR, FPR dynamic behavior such as receptor dimerization on the cell surface remains unknown. Recently, peptides derived from the transmembrane (TM) domains of GPCRs were shown to disrupt dimer formation by receptors and to result in specific regulation of receptor function. To reveal the function of FPR TM domains, hFPRTM peptides derived from FPR were synthesized, and their biological activities were evaluated with human neutrophils. Synthetic peptides did not exhibit agonistic or antagonistic activity toward superoxide anion production. However, Neutrophils treated with hFPRTM4 produced 4-fold superoxide anion compared with untreated cells when stimulated with FPR agonist fMLP. Short peptide fragments derived from the fourth TM region of FPR did not enhance superoxide anion production, which suggests that hFPRTM4 did not behave as a ligand. CD and fluorescence spectra suggested that hFPRTM peptides were inserted into the membrane. The addition of hFPRTM4 increased the intracellular calcium concentration, which meant the peptide activated some membrane protein on the cell surface. The present study suggests that the fourth TM domain of FPR has a function related to a priming effect.  相似文献   

9.
The transmembrane 9 (TM9) family of proteins contains numerous members in eukaryotes. Although their function remains essentially unknown in higher eukaryotes, the Dictyostelium discoideum Phg1a TM9 protein was recently reported to be essential for cellular adhesion and phagocytosis. Herein, the function of Phg1a and of a new divergent member of the TM9 family called Phg1b was further investigated in D. discoideum. The phenotypes of PHG1a, PHG1b, and PHG1a/PHG1b double knockout cells revealed that Phg1a and Phg1b proteins play a synergistic but not redundant role in cellular adhesion, phagocytosis, growth, and development. Complementation analysis supports a synergistic regulatory function rather than a receptor role for Phg1a and Phg1b proteins. Together, these results suggest that Phg1 proteins act as regulators of cellular adhesion, possibly by controlling the intracellular transport in the endocytic pathway and the composition of the cell surface.  相似文献   

10.
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.  相似文献   

11.
CRINKLY4 (CR4) is a plant serine–threonine receptor kinase. In Zea mays, CR4 functions in the differentiation of the leaf epidermis and the aleurone cell layer and, in Arabidopsis thaliana, the ortholog ACR4 is involved in the development of the integument and seed coat. The Arabidopsis genome also encodes four CR4-related proteins (CRR) whose functions are not known. Based on studies of animal receptor kinase proteins it is likely that the molecular basis of function of CR4 and related proteins is mediated by receptor dimerization. The importance of the transmembrane (TM) domain in the dimerization of several receptor kinases has been demonstrated by the TOXCAT system, a genetic assay that measures helix interactions in a natural membrane environment. In this study, we have used the TOXCAT assay to investigate the potential of the CR4 and CR4-related TM domains to homo-dimerize. Our investigation indicates that the CR4 TM domain and the CRR TM domains have higher propensities for homo-dimerization than the ACR4 TM domain. Interestingly, the dimerization potential of the ACR4 TM domain is significantly weaker even though 13 of 24 amino acids are identical to that of the CR4 TM domain. In order to determine the contributions of specific amino acids to the higher dimerization potential of CR4 compared to ACR4, mutations were made at specific sites in ACR4 TM domain and the strength of the dimer assessed by the TOXCAT assay. One mutation restored the activity to the CR4 level, while other mutations produced either no change or significantly increased the dimerization potential of the ACR4 TM domain. Our results indicate that the TM domains of CR4, ACR4 and the CRR receptor family of proteins have the intrinsic capacity to homo-dimerize, albeit with varying degrees of affinity.  相似文献   

12.
《Biophysical journal》2022,121(17):3253-3262
As the bacterial multidrug resistance crisis continues, membrane-active antimicrobial peptides are being explored as an alternate treatment to conventional antibiotics. In contrast to antimicrobial peptides, which function by a nonspecific membrane disruption mechanism, here we describe a series of transmembrane (TM) peptides that are designed to act as drug efflux inhibitors by aligning with and out-competing a conserved TM4-TM4 homodimerization motif within bacterial small multidrug resistance proteins. The peptides contain two terminal tags: a C-terminal lysine tag to direct the peptides toward the negatively charged bacterial membrane, and an uncharged N-terminal sarcosine (N-methyl-glycine) tag to promote membrane insertion. While effective at inhibiting efflux activity, ostensibly through their designed mechanism of action, the impact of the peptides on the bacterial inner membrane remains undetermined. To evaluate the extant peptide-membrane interactions, we performed a series of biophysical measurements. Circular dichroism spectroscopy and Trp fluorescence showed that the peptides insert into the membrane generally in helical form. Interestingly, differential scanning calorimetry of the peptides added to bacterial-like membranes (POPE:POPG 3:1) revealed the peptides’ ability to demix the POPE and POPG lipids, creating two pools, one of which is likely a peptide-POPG conglomerate, and the other a POPE-rich component where the native POPG content has been depleted. However, dye leakage assays confirmed that these events occur without causing significant membrane disruption both in vitro and in vivo, indicating that the peptides can target the small multidrug resistance TM4-TM4 motif without nonspecific membrane disruption. In related studies, DiOC2(3) fluorescence indicated moderate peptide-mediated reduction of the proton motive force for all peptides, including control peptides that did not display inhibitory activity. The overall findings suggest that peptides designed with suitable tags, sequence hydrophobicity, and charge distribution can be directed more generally to impact proteins whose function involves membrane-embedded protein-protein interactions.  相似文献   

13.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.Key words: bitopic membrane proteins, transmembrane domains, transmembrane signaling, helix-helix interactions, receptors  相似文献   

14.
Transmembrane (TM) regions of receptor proteins should have unique structural and/or chemical characteristics if these regions contain residues functional in TM signal transduction. However, in a survey of the membrane-occurring residues in 37 integral membrane proteins, we found that amino acid compositions of TM regions of receptor proteins (n = 11) could not be distinguished statistically from corresponding regions of membrane-anchored proteins (e.g., recognition molecules) with a functional external domain attached to a single hydrophobic membrane-spanning anchor segment (n = 16). TM regions in both categories of proteins differed from the compositions of TM regions in membrane-transport proteins (n = 10). The analysis implies that TM regions in receptor proteins may function mainly to anchor (and position) receptors in their cellular membranes, and therefore residues in receptors that participate in signal transduction need not be restricted to these regions. In addition to mechanisms involving receptor aggregation, ligand-activated conformational perturbation of a receptor external aqueous domain, resulting in membrane penetration of hydrophobic segment(s) of this domain to produce intramembranous contact with its cytoplasmic domain, is hypothesized as a further possible mode of signal transduction.  相似文献   

15.
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.  相似文献   

16.
Human T-cell leukemia virus type 1 (HTLV-1) entry into cells is dependent upon the viral envelope glycoprotein-catalyzed fusion of the viral and cellular membranes. Following receptor activation of the envelope, the transmembrane glycoprotein (TM) is thought to undergo a series of fusogenic conformational transitions through a rod-like prehairpin intermediate to a compact trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that TM is a valid target for antiviral therapy. To assess the utility of TM as a vaccine target and to explore further the function of TM in HTLV-1 pathogenesis, we have begun to examine the immunological properties of TM. Here we demonstrate that a recombinant trimer-of-hairpins form of the TM ectodomain is strongly immunogenic. Monoclonal antibodies raised against the TM immunogen specifically bind to trimeric forms of TM, including structures thought to be important for membrane fusion. Importantly, these antibodies recognize the envelope on virally infected cells but, surprisingly, fail to neutralize envelope-mediated membrane fusion or infection by pseudotyped viral particles. Our data imply that, even in the absence of overt membrane fusion, there are multiple forms of TM on virally infected cells and that some of these display fusion-associated structures. Finally, we demonstrate that many of the antibodies possess the ability to recruit complement to TM, suggesting that envelope-derived immunogens capable of eliciting a combination of neutralizing and complement-fixing antibodies would be of value as subunit vaccines for intervention in HTLV infections.  相似文献   

17.
The μ-opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, as illustrated by the identification of an array of splice variants generated by both 5′ and 3′ alternative splicing. The current study reports the identification of another set of splice variants conserved across species that are generated through exon skipping or insertion that encodes proteins containing only a single transmembrane (TM) domain. Using a Tet-Off system, we demonstrated that the truncated single TM variants can dimerize with the full-length 7-TM μ-opioid receptor (MOR-1) in the endoplasmic reticulum, leading to increased expression of MOR-1 at the protein level by a chaperone-like function that minimizes endoplasmic reticulum-associated degradation. In vivo antisense studies suggested that the single TM variants play an important role in morphine analgesia, presumably through modulation of receptor expression levels. Our studies suggest the functional roles of truncated receptors in other G protein-coupled receptor families.  相似文献   

18.
Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of “membrane scaffold protein.” Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.  相似文献   

19.
The membrane assembly of polytopic membrane proteins is a complicated process. Using Chinese hamster P-glycoprotein (Pgp) as a model protein, we investigated this process previously and found that Pgp expresses more than one topology. One of the variations occurs at the transmembrane (TM) domain including TM3 and TM4: TM4 inserts into membranes in an Nin-Cout rather than the predicted Nout-Cin orientation, and TM3 is in cytoplasm rather than the predicted Nin-Cout orientation in the membrane. It is possible that TM4 has a strong activity to initiate the Nin-Cout membrane insertion, leaving TM3 out of the membrane. Here, we tested this hypothesis by expressing TM3 and TM4 in isolated conditions. Our results show that TM3 of Pgp does not have de novo Nin-Cout membrane insertion activity whereas TM4 initiates the Nin-Cout membrane insertion regardless of the presence of TM3. In contrast, TM3 and TM4 of another polytopic membrane protein, cystic fibrosis transmembrane conductance regulator (CFTR), have a similar level of de novo Nin-Cout membrane insertion activity and TM4 of CFTR functions only as a stop-transfer sequence in the presence of TM3. Based on these findings, we propose that 1) the membrane insertion of TM3 and TM4 of Pgp does not follow the sequential model, which predicts that TM3 initiates Nin-Cout membrane insertion whereas TM4 stops the insertion event; and 2) “leaving one TM segment out of the membrane” may be an important folding mechanism for polytopic membrane proteins, and it is regulated by the Nin-Cout membrane insertion activities of the TM segments.  相似文献   

20.
In seven-transmembrane (7TM), G protein-coupled receptors, highly conserved residues function as microswitches, which alternate between different conformations and interaction partners in an extended allosteric interface between the transmembrane segments performing the large scale conformational changes upon receptor activation. Computational analysis using x-ray structures of the β2-adrenergic receptor demonstrated that PheVI:09 (6.44), which in the inactive state is locked between the backbone and two hydrophobic residues in transmembrane (TM)-III, upon activation slides ∼2 Å toward TM-V into a tight pocket generated by five hydrophobic residues protruding from TM-III and TM-V. Of these, the residue in position III:16 (3.40) (often an Ile or Val) appears to function as a barrier or gate for the transition between inactive and active conformation. Mutational analysis showed that PheVI:09 is essential for the constitutive and/or agonist-induced signaling of the ghrelin receptor, GPR119, the β2-adrenergic receptor, and the neurokinin-1 receptor. Substitution of the residues constituting the hydrophobic pocket between TM-III and TM-V in the ghrelin receptor in four of five positions impaired receptor signaling. In GPR39, representing the 12% of 7TM receptors lacking an aromatic residue at position VI:09, unchanged agonist-induced signaling was observed upon Ala substitution of LeuVI:09 despite reduced cell surface expression of the mutant receptor. It is concluded that PheVI:09 constitutes an aromatic microswitch that stabilizes the active, outward tilted conformation of TM-VI relative to TM-III by sliding into a tight hydrophobic pocket between TM-III and TM-V and that the hydrophobic residue in position III:16 constitutes a gate for this transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号