共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligation Bias in Illumina Next-Generation DNA Libraries: Implications for Sequencing Ancient Genomes
Andaine Seguin-Orlando Mikkel Schubert Joel Clary Julia Stagegaard Maria T. Alberdi José Luis Prado Alfredo Prieto Eske Willerslev Ludovic Orlando 《PloS one》2013,8(10)
Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries. 相似文献
2.
Maria Ximena Sosa I. K. Ashok Sivakumar Samantha Maragh Vamsi Veeramachaneni Ramesh Hariharan Minothi Parulekar Karin M. Fredrikson Timothy T. Harkins Jeffrey Lin Andrew B. Feldman Pramila Tata Georg B. Ehret Aravinda Chakravarti 《PLoS computational biology》2012,8(10)
We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome), which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU) and African (YRI) ancestry to demonstrate a sequencing error rate <5.63×10−4, nucleotide diversity of 1.6×10−3 for CEU and 3.7×10−3 for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine. 相似文献
3.
Telomeres are the ends of eukaryotic chromosomes, consisting of consecutive short repeats that protect chromosome ends from degradation. Telomeres shorten with each cell division, leading to replicative cell senescence. Deregulation of telomere length homeostasis is associated with the development of various age-related diseases and cancers. A number of experimental techniques exist for telomere length measurement; however, until recently, the absence of tools for extracting telomere lengths from high-throughput sequencing data has significantly obscured the association of telomere length with molecular processes in normal and diseased conditions. We have developed Computel, a program in R for computing mean telomere length from whole-genome next-generation sequencing data. Computel is open source, and is freely available at https://github.com/lilit-nersisyan/computel. It utilizes a short-read alignment-based approach and integrates various popular tools for sequencing data analysis. We validated it with synthetic and experimental data, and compared its performance with the previously available software. The results have shown that Computel outperforms existing software in accuracy, independence of results from sequencing conditions, stability against inherent sequencing errors, and better ability to distinguish pure telomeric sequences from interstitial telomeric repeats. By providing a highly reliable methodology for determining telomere lengths from whole-genome sequencing data, Computel should help to elucidate the role of telomeres in cellular health and disease. 相似文献
4.
Kazuko Sakai Junji Tsurutani Takeharu Yamanaka Azusa Yoneshige Akihiko Ito Yosuke Togashi Marco A. De Velasco Masato Terashima Yoshihiko Fujita Shuta Tomida Takao Tamura Kazuhiko Nakagawa Kazuto Nishio 《PloS one》2015,10(5)
Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10-5). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples. 相似文献
5.
基于高通量测序技术的微生物检测数据分析方法 总被引:1,自引:0,他引:1
高通量测序技术的发展正在逐渐改变诸多生物学领域的研究方法.为应对突发疫情以及新发未知微生物威胁的需求,微生物鉴定技术逐渐从传统的物理化学方法及核酸杂交等分子水平方法进一步走向利用无需培养的测序数据进行快速分析检测.随之而来的是对高通量数据分析在精度及速度的要求.基于高通量测序数据的微生物检测数据分析方法在近些年得到了快速的发展.本文分析了目前基于高通量测序数据的微生物检测数据分析方法,对其数据分析的处理流程和计算方法进行了研究,比较了各个微生物检测数据分析方法的特点及适用场景.最后结合本实验室工作总结微生物检测数据分析方法在实际应用中可能遇到的问题,希望对该应用领域的研究有一定的参考意义. 相似文献
6.
Hideki Nagasaki Takako Mochizuki Yuichi Kodama Satoshi Saruhashi Shota Morizaki Hideaki Sugawara Hajime Ohyanagi Nori Kurata Kousaku Okubo Toshihisa Takagi Eli Kaminuma Yasukazu Nakamura 《DNA research》2013,20(4):383-390
High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/. 相似文献
7.
Zehra Ordulu Tammy Kammin Harrison Brand Vamsee Pillalamarri Claire E. Redin Ryan L. Collins Ian Blumenthal Carrie Hanscom Shahrin Pereira India Bradley Barbara F. Crandall Pamela Gerrol Mark A. Hayden Naveed Hussain Bibi Kanengisser-Pines Sibel Kantarci Brynn Levy Michael J. Macera Fabiola Quintero-Rivera Erica Spiegel Blair Stevens Janet E. Ulm Dorothy Warburton Louise E. Wilkins-Haug Naomi Yachelevich James F. Gusella Michael E. Talkowski Cynthia C. Morton 《American journal of human genetics》2016,99(5):1015-1033
8.
Copy number variation (CNV) has played an important role in studies of susceptibility or resistance to complex diseases. Traditional methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) suffer from low resolution of genomic regions. Following the emergence of next generation sequencing (NGS) technologies, CNV detection methods based on the short read data have recently been developed. However, due to the relatively young age of the procedures, their performance is not fully understood. To help investigators choose suitable methods to detect CNVs, comparative studies are needed. We compared six publicly available CNV detection methods: CNV-seq, FREEC, readDepth, CNVnator, SegSeq and event-wise testing (EWT). They are evaluated both on simulated and real data with different experiment settings. The receiver operating characteristic (ROC) curve is employed to demonstrate the detection performance in terms of sensitivity and specificity, box plot is employed to compare their performances in terms of breakpoint and copy number estimation, Venn diagram is employed to show the consistency among these methods, and F-score is employed to show the overlapping quality of detected CNVs. The computational demands are also studied. The results of our work provide a comprehensive evaluation on the performances of the selected CNV detection methods, which will help biological investigators choose the best possible method. 相似文献
9.
10.
11.
Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. 相似文献
12.
Obtaining an unbiased view of the phylogenetic composition and functional diversity within a microbial community is one central objective of metagenomic analysis. New technologies, such as 454 pyrosequencing, have dramatically reduced sequencing costs, to a level where metagenomic analysis may become a viable alternative to more-focused assessments of the phylogenetic (e.g., 16S rRNA genes) and functional diversity of microbial communities. To determine whether the short (~100 to 200 bp) sequence reads obtained from pyrosequencing are appropriate for the phylogenetic and functional characterization of microbial communities, the results of BLAST and COG analyses were compared for long (~750 bp) and randomly derived short reads from each of two microbial and one virioplankton metagenome libraries. Overall, BLASTX searches against the GenBank nr database found far fewer homologs within the short-sequence libraries. This was especially pronounced for a Chesapeake Bay virioplankton metagenome library. Increasing the short-read sampling depth or the length of derived short reads (up to 400 bp) did not completely resolve the discrepancy in BLASTX homolog detection. Only in cases where the long-read sequence had a close homolog (low BLAST E-score) did the derived short-read sequence also find a significant homolog. Thus, more-distant homologs of microbial and viral genes are not detected by short-read sequences. Among COG hits, derived short reads sampled at a depth of two short reads per long read missed up to 72% of the COG hits found using long reads. Noting the current limitation in computational approaches for the analysis of short sequences, the use of short-read-length libraries does not appear to be an appropriate tool for the metagenomic characterization of microbial communities. 相似文献
13.
14.
Martina Miju?kovi? Stuart M. Brown Zuojian Tang Cory R. Lindsay Efstratios Efstathiadis Ludovic Deriano David B. Roth 《PloS one》2012,7(10)
Defining the architecture of a specific cancer genome, including its structural variants, is essential for understanding tumor biology, mechanisms of oncogenesis, and for designing effective personalized therapies. Short read paired-end sequencing is currently the most sensitive method for detecting somatic mutations that arise during tumor development. However, mapping structural variants using this method leads to a large number of false positive calls, mostly due to the repetitive nature of the genome and the difficulty of assigning correct mapping positions to short reads. This study describes a method to efficiently identify large tumor-specific deletions, inversions, duplications and translocations from low coverage data using SVDetect or BreakDancer software and a set of novel filtering procedures designed to reduce false positive calls. Applying our method to a spontaneous T cell lymphoma arising in a core RAG2/p53-deficient mouse, we identified 40 validated tumor-specific structural rearrangements supported by as few as 2 independent read pairs. 相似文献
15.
Sarah Bonnet Lorraine Michelet Sara Moutailler Justine Cheval Charles Hébert Muriel Vayssier-Taussat Marc Eloit 《PLoS neglected tropical diseases》2014,8(3)
Background
Risk assessment of tick-borne and zoonotic disease emergence necessitates sound knowledge of the particular microorganisms circulating within the communities of these major vectors. Assessment of pathogens carried by wild ticks must be performed without a priori, to allow for the detection of new or unexpected agents.Methodology/Principal Findings
We evaluated the potential of Next-Generation Sequencing techniques (NGS) to produce an inventory of parasites carried by questing ticks. Sequences corresponding to parasites from two distinct genera were recovered in Ixodes ricinus ticks collected in Eastern France: Babesia spp. and Theileria spp. Four Babesia species were identified, three of which were zoonotic: B. divergens, Babesia sp. EU1 and B. microti; and one which infects cattle, B. major. This is the first time that these last two species have been identified in France. This approach also identified new sequences corresponding to as-yet unknown organisms similar to tropical Theileria species.Conclusions/Significance
Our findings demonstrate the capability of NGS to produce an inventory of live tick-borne parasites, which could potentially be transmitted by the ticks, and uncovers unexpected parasites in Western Europe. 相似文献16.
To date we have little knowledge of how accurate next-generation sequencing (NGS) technologies are in sequencing repetitive sequences beyond known limitations to accurately sequence homopolymers. Only a handful of previous reports have evaluated the potential of NGS for sequencing short tandem repeats (microsatellites) and no empirical study has compared and evaluated the performance of more than one NGS platform with the same dataset. Here we examined yeast microsatellite variants from both long-read (454-sequencing) and short-read (Illumina) NGS platforms and compared these to data derived through Sanger sequencing. In addition, we investigated any locus-specific biases and differences that might have resulted from variability in microsatellite repeat number, repeat motif or type of mutation. Out of 112 insertion/deletion variants identified among 45 microsatellite amplicons in our study, we found 87.5% agreement between the 454-platform and Sanger sequencing in frequency of variant detection after Benjamini-Hochberg correction for multiple tests. For a subset of 21 microsatellite amplicons derived from Illumina sequencing, the results of short-read platform were highly consistent with the other two platforms, with 100% agreement with 454-sequencing and 93.6% agreement with the Sanger method after Benjamini-Hochberg correction. We found that the microsatellite attributes copy number, repeat motif and type of mutation did not have a significant effect on differences seen between the sequencing platforms. We show that both long-read and short-read NGS platforms can be used to sequence short tandem repeats accurately, which makes it feasible to consider the use of these platforms in high-throughput genotyping. It appears the major requirement for achieving both high accuracy and rare variant detection in microsatellite genotyping is sufficient read depth coverage. This might be a challenge because each platform generates a consistent pattern of non-uniform sequence coverage, which, as our study suggests, may affect some types of tandem repeats more than others. 相似文献
17.
The novel multi-million read generating sequencing technologies are very promising for resolving the immense soil 16S rRNA gene bacterial diversity. Yet they have a limited maximum sequence length screening ability, restricting studies in screening DNA stretches of single 16S rRNA gene hypervariable (V) regions. The aim of the present study was to assess the effects of properties of four consecutive V regions (V3-6) on commonly applied analytical methodologies in bacterial ecology studies. Using an in silico approach, the performance of each V region was compared with the complete 16S rRNA gene stretch. We assessed related properties of the soil derived bacterial sequence collection of the Ribosomal Database Project (RDP) database and concomitantly performed simulations based on published datasets. Results indicate that overall the most prominent V region for soil bacterial diversity studies was V3, even though it was outperformed in some of the tests. Despite its high performance during most tests, V4 was less conserved along flanking sites, thus reducing its ability for bacterial diversity coverage. V5 performed well in the non-redundant RDP database based analysis. However V5 did not resemble the full-length 16S rRNA gene sequence results as well as V3 and V4 did when the natural sequence frequency and occurrence approximation was considered in the virtual experiment. Although, the highly conserved flanking sequence regions of V6 provide the ability to amplify partial 16S rRNA gene sequences from very diverse owners, it was demonstrated that V6 was the least informative compared to the rest examined V regions. Our results indicate that environment specific database exploration and theoretical assessment of the experimental approach are strongly suggested in 16S rRNA gene based bacterial diversity studies. 相似文献
18.
19.
Computer analyses of various genome sequences revealed the existence of certain periodical patterns of adenine–adenine dinucleotides
(ApA). For each genome sequence of 13 eubacteria, 3 archaebacteria, 10 eukaryotes, 60 mitochondria, and 9 chloroplasts, we
counted frequencies of ApA dinucleotides at each downstream position within 50 bp from every ApA. We found that the complete
genomes of all three archaebacteria have clear ApA periodicities of about 10 bps. On the other hand, all of the 13 eubacteria
we analyzed were found to have an ApA periodicity of about 11 bp. Similar periodicities exist in the 10 eukaryotes, although
higher organisms such as primates tend to have weaker periodic patterns. None of the mitochondria and chroloplasts we analyzed
showed an evident periodic pattern.
Received: 3 November 1998 / Accepted: 24 March 1999 相似文献
20.