首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribonuclease activity and RNA binding of recombinant human Dicer   总被引:44,自引:0,他引:44  
  相似文献   

2.
The prevalence of double‐stranded RNA (dsRNA) in eukaryotic cells has only recently been appreciated. Of interest here, RNA silencing begins with dsRNA substrates that are bound by the dsRNA‐binding domains (dsRBDs) of their processing proteins. Specifically, processing of microRNA (miRNA) in the nucleus minimally requires the enzyme Drosha and its dsRBD‐containing cofactor protein, DGCR8. The smallest recombinant construct of DGCR8 that is sufficient for in vitro dsRNA binding, referred to as DGCR8‐Core, consists of its two dsRBDs and a C‐terminal tail. As dsRBDs rarely recognize the nucleotide sequence of dsRNA, it is reasonable to hypothesize that DGCR8 function is dependent on the recognition of specific structural features in the miRNA precursor. Previously, we demonstrated that noncanonical structural elements that promote RNA flexibility within the stem of miRNA precursors are necessary for efficient in vitro cleavage by reconstituted Microprocessor complexes. Here, we combine gel shift assays with in vitro processing assays to demonstrate that neither the N‐terminal dsRBD of DGCR8 in isolation nor the DGCR8‐Core construct is sensitive to the presence of noncanonical structural elements within the stem of miRNA precursors, or to single‐stranded segments flanking the stem. Extending DGCR8‐Core to include an N‐terminal heme‐binding region does not change our conclusions. Thus, our data suggest that although the DGCR8‐Core region is necessary for dsRNA binding and recruitment to the Microprocessor, it is not sufficient to establish the previously observed connection between RNA flexibility and processing efficiency. Proteins 2015; 83:1165–1179. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
4.
5.
The RNA recognition motif (RRM) is one of the most common RNA binding domains. We have investigated the contribution of three highly conserved aromatic amino acids to RNA binding by the N-terminal RRM of the U1A protein. Recently, we synthesized a modified base (A-4CPh) in which a phenyl group is tethered to adenine using a linker of 4 methylene groups. The substitution of this base for adenine in the target RNA selectively stabilizes the complex formed with a U1A protein in which one of the conserved aromatic amino acids is replaced with Ala (Phe56Ala). In this article, we report molecular dynamics (MD) simulations that probe the structural consequences of the substitution of A-4CPh for adenine in the wild type and Phe56Ala U1A-RNA complexes and in the free RNA. The simulations suggest that A-4CPh stabilizes the complex formed with Phe56Ala by adopting a folded conformation in which the tethered phenyl group fills the site occupied by the phenyl group of Phe56 in the wild-type complex. In contrast, an extended conformation of A-4CPh is predicted to be most stable in the complex formed with the wild-type protein. The calculations indicate A-4CPh is in an extended conformation in the free RNA. Therefore, preorganizing the structure of the phenyl-tethered base for binding may improve both the affinity and specificity of the RNA containing A-4CPh for the Phe56Ala U1A protein. Taken together, the previous experimental work and the calculations reported here suggest a general design strategy for altering RRM-RNA complex stability.  相似文献   

6.
Faithful genetic code translation requires that each aminoacyl-tRNA synthetase recognise its cognate amino acid ligand specifically. Aspartyl-tRNA synthetase (AspRS) distinguishes between its negatively-charged Asp substrate and two competitors, neutral Asn and di-negative succinate, using a complex network of electrostatic interactions. Here, we used molecular dynamics simulations and site-directed mutagenesis experiments to probe these interactions further. We attempt to decrease the Asp/Asn binding free energy difference via single, double and triple mutations that reduce the net positive charge in the active site of Escherichia coli AspRS. Earlier, Glutamine 199 was changed to a negatively-charged glutamate, giving a computed reduction in Asp affinity in good agreement with experiment. Here, Lysine 198 was changed to a neutral leucine; then, Lys198 and Gln199 were mutated simultaneously. Both mutants are predicted to have reduced Asp binding and improved Asn binding, but the changes are insufficient to overcome the initial, high specificity of the native enzyme, which retains a preference for Asp. Probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments, we found no detectable activity for the mutant enzymes, indicating weaker Asp binding and/or poorer transition state stabilization. The simulations show that the mutations' effect is partly offset by proton uptake by a nearby histidine. Therefore, we performed additional simulations where the nearby Histidines 448 and 449 were mutated to neutral or negative residues: (Lys198Leu, His448Gln, His449Gln), and (Lys198Leu, His448Glu, His449Gln). This led to unexpected conformational changes and loss of active site preorganization, suggesting that the AspRS active site has a limited structural tolerance for electrostatic modifications. The data give insights into the complex electrostatic network in the AspRS active site and illustrate the difficulty in engineering charged-to-neutral changes of the preferred ligand.  相似文献   

7.
Murtola T  Vattulainen I  Falck E 《Proteins》2008,71(4):1995-2011
Tryptophan biosynthesis in Bacillus stearothermophilus is regulated by a trp RNA binding attenuation protein (TRAP). It is a ring-shaped 11-mer of identical 74 residue subunits. Tryptophan binding pockets are located between adjacent subunits, and tryptophan binding activates TRAP to bind RNA. Here, we report results from all-atom molecular dynamics simulations of the system, complementing existing extensive experimental studies. We focus on two questions. First, we look at the activation mechanism, of which relatively little is known experimentally. We find that the absence of tryptophan allows larger motions close to the tryptophan binding site, and we see indication of a conformational change in the BC loop. However, complete deactivation seems to occur on much longer time scales than the 40 ns studied here. Second, we study the TRAP-RNA interactions. We look at the relative flexibilities of the different bases in the complex and analyze the hydrogen bonds between the protein and RNA. We also study the role of Lys37, Lys56, and Arg58, which have been experimentally identified as essential for RNA binding. Hydrophobic stacking of Lys37 with the nearby RNA base is confirmed, but we do not see direct hydrogen bonding between RNA and the other two residues, in contrast to the crystal structure. Rather, these residues seem to stabilize the RNA-binding surface, and their positive charge may also play a role in RNA binding. Simulations also indicate that TRAP is able to attract RNA nonspecifically, and the interactions are quantified in more detail using binding energy calculations. The formation of the final binding complex is a very slow process: within the simulation time scale of 40 ns, only two guanine bases become bound (and no others), indicating that the binding initiates at these positions. In general, our results are in good agreement with experimental studies, and provide atomic-scale insights into the processes.  相似文献   

8.
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed.  相似文献   

9.
10.
11.
Computational prediction of RNA‐binding residues is helpful in uncovering the mechanisms underlying protein‐RNA interactions. Traditional algorithms individually applied feature‐ or template‐based prediction strategy to recognize these crucial residues, which could restrict their predictive power. To improve RNA‐binding residue prediction, herein we propose the first integrative algorithm termed RBRDetector (RNA‐Binding Residue Detector) by combining these two strategies. We developed a feature‐based approach that is an ensemble learning predictor comprising multiple structure‐based classifiers, in which well‐defined evolutionary and structural features in conjunction with sequential or structural microenvironment were used as the inputs of support vector machines. Meanwhile, we constructed a template‐based predictor to recognize the putative RNA‐binding regions by structurally aligning the query protein to the RNA‐binding proteins with known structures. The final RBRDetector algorithm is an ingenious fusion of our feature‐ and template‐based approaches based on a piecewise function. By validating our predictors with diverse types of structural data, including bound and unbound structures, native and simulated structures, and protein structures binding to different RNA functional groups, we consistently demonstrated that RBRDetector not only had clear advantages over its component methods, but also significantly outperformed the current state‐of‐the‐art algorithms. Nevertheless, the major limitation of our algorithm is that it performed relatively well on DNA‐binding proteins and thus incorrectly predicted the DNA‐binding regions as RNA‐binding interfaces. Finally, we implemented the RBRDetector algorithm as a user‐friendly web server, which is freely accessible at http://ibi.hzau.edu.cn/rbrdetector . Proteins 2014; 82:2455–2471. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
A considerable number of functional proteins are unstructured under physiological condition. These "intrinsically disordered" proteins exhibit induced folding when they bind their targets. The induced folding comprises two elementary processes: folding and binding. Two mechanisms are possible for the induced folding: either folding before binding or binding before folding. We found that these two mechanisms can be distinguished by the target-concentration dependence of folding kinetics. We also created two types of mutants of staphylococcal nuclease showing the different inhibitor-concentration dependence of induced folding kinetics. One mutant obeys the scheme of binding before folding, while the other the folding before binding. This is the first experimental evidence demonstrating that both mechanisms are realized for a single protein. Binding before folding is possible, when the protein lacks essential nonlocal interaction to stabilize the native conformation. The results cast light on the protein folding mechanism involved in the intrinsically disordered proteins.  相似文献   

13.
Flavodoxins, noncovalent complexes between apoflavodoxins and flavin mononucleotide (FMN), are useful models to investigate the mechanism of protein/flavin recognition. In this respect, the only available crystal structure of an apoflavodoxin (that from Anabaena) showed a closed isoalloxazine pocket and the presence of a bound phosphate ion, which posed many questions on the recognition mechanism and on the potential physiological role exerted by phosphate ions. To address these issues we report here the X-ray structure of the apoflavodoxin from the pathogen Helicobacter pylori. The protein naturally lacks one of the conserved aromatic residues that close the isoalloxazine pocket in Anabaena, and the structure has been determined in a medium lacking phosphate. In spite of these significant differences, the isoallozaxine pocket in H. pylori apoflavodoxin appears also closed and a chloride ion is bound at a native-like FMN phosphate site. It seems thus that it is a general characteristic of apoflavodoxins to display closed, non-native, isoalloxazine binding sites together with native-like, rather promiscuous, phosphate binding sites that can bear other available small anions present in solution. In this respect, both binding energy hot spots of the apoflavodoxin/FMN complex are initially unavailable to FMN binding and the specific spot for FMN recognition may depend on the dynamics of the two candidate regions. Molecular dynamics simulations show that the isoalloxazine binding loops are intrinsically flexible at physiological temperatures, thus facilitating the intercalation of the cofactor, and that their mobility is modulated by the anion bound at the phosphate site.  相似文献   

14.
The signal recognition particle (SRP) plays an important role in the delivery of secretory proteins to cellular membranes. Mammalian SRP is composed of six polypeptides among which SRP68 and SRP72 form a heterodimer that has been notoriously difficult to investigate. Human SRP68 was purified from overexpressing Escherichia coli cells and was found to bind to recombinant SRP72 as well as in vitro-transcribed human SRP RNA. Polypeptide fragments covering essentially the entire SRP68 molecule were generated recombinantly or by proteolytic digestion. The RNA binding domain of SRP68 included residues from positions 52 to 252. Ninety-four amino acids near the C terminus of SRP68 mediated the binding to SRP72. The SRP68-SRP72 interaction remained stable at elevated salt concentrations and engaged approximately 150 amino acids from the N-terminal region of SRP72. This portion of SRP72 was located within a predicted tandem array of four tetratricopeptide (TPR)-like motifs suggested to form a superhelical structure with a groove to accommodate the C-terminal region of SRP68.  相似文献   

15.
Satpati P  Simonson T 《Proteins》2012,80(5):1264-1282
Archaeal Initiation Factor 2 is a GTPase involved in protein biosynthesis. In its GTP-bound, "ON" conformation, it binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and their dependence on the conformational state, molecular dynamics free energy simulations were performed. The ON state specificity was predicted to be weak, with a GTP/GDP binding free energy difference of -1 kcal/mol, favoring GTP. The OFF state specificity is larger, 4 kcal/mol, favoring GDP. The overall effects result from a competition among many interactions in several complexes. To interpret them, we use a simpler, dielectric continuum model. Several effects are robust with respect to the model details. Both nucleotides have a net negative charge, so that removing them from solvent into the binding pocket carries a desolvation penalty, which is large for the ON state, and strongly disfavors GTP binding compared to GDP. Short-range interactions between the additional GTP phosphate group and ionized sidechains in the binding pocket offset most, but not all of the desolvation penalty; more distant groups also contribute significantly, and the switch 1 loop only slightly. The desolvation penalty is lower for the more open, wetter OFF state, and the GTP/GDP difference much smaller. Short-range interactions in the binding pocket and with more distant groups again make a significant contribution. Overall, the simulations help explain how conformational selection is achieved with a single phosphate group.  相似文献   

16.
The covalent attachment of different types of poly‐ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys‐48‐linked poly‐ubiquitin chains is targeted for proteasomal degradation, whereas Lys‐63‐linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X‐ray crystal structures of Lys‐63‐linked tri‐ and di‐ubiquitin at resolutions of 2.3 and 1.9 Å, respectively. The tri‐ and di‐ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left‐handed helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of ~110 Å. Interestingly, Lys‐48 ubiquitin chains also adopt a left‐handed helical structure with a similar repeat length. However, the Lys‐63 architecture is much more open than that of Lys‐48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys‐63 chain conformation, and reveal the structural basis for differential recognition of Lys‐63 versus Lys‐48 chains. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
TDP‐43 forms the primary constituents of the cytoplasmic inclusions contributing to various neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Over 60 TDP‐43 mutations have been identified in patients suffering from these two diseases, but most variations are located in the protein''s disordered C‐terminal glycine‐rich region. P112H mutation of TDP‐43 has been uniquely linked to FTD, and is located in the first RNA recognition motif (RRM1). This mutation is thought to be pathogenic, but its impact on TDP‐43 at the protein level remains unclear. Here, we compare the biochemical and biophysical properties of TDP‐43 truncated proteins with or without P112H mutation. We show that P112H‐mutated TDP‐43 proteins exhibit higher thermal stability, impaired RNA‐binding activity, and a reduced tendency to aggregate relative to wild‐type proteins. Near‐UV CD, 2D‐nuclear‐magnetic resonance, and intrinsic fluorescence spectrometry further reveal that the P112H mutation in RRM1 generates local conformational changes surrounding the mutational site that disrupt the stacking interactions of the W113 side chain with nucleic acids. Together, these results support the notion that P112H mutation of TDP‐43 contributes to FTD through functional impairment of RNA metabolism and/or structural changes that curtail protein clearance.  相似文献   

18.
Li Y  Wang HY  Wan FC  Liu FJ  Liu J  Zhang N  Jin SH  Li JY 《Gene》2012,497(2):330-335
The epididymis plays a crucial role in regulating the development of sperm motility and fertilizing capacity. Small non-coding RNAs (sncRNAs), especially microRNAs (miRNAs), can participate in the regulation of various physiological pathways. However, their abundance and whether they are involved in the regulation of gene expression in the human epididymis are unknown. By adopting the Solexa deep sequencing approach, we systematically investigated the sncRNAs in the adult human epididymis. A total of 4903 unique sequences representing 527 known miRNA were discovered. Eighteen novel miRNA genes encoding 23 mature miRNAs were also identified and the expression of some of them was confirmed by qRT-PCR. The presence of Piwi-interacting RNAs (piRNAs) in the library also adds to the diversity of the sncRNA population in the human epididymis. This research will contribute to a preliminary database for their functional study in male reproductive system.  相似文献   

19.
Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et al., 1996, Science 274:1531-1534), indicates that CAST pocket computation may provide a priori identification of target proteins for linked-fragment design. CAST analysis of 30 HIV-1 protease-inhibitor complexes shows that the flexible active site pocket can vary over a range of 853-1,566 A3, and that there are two pockets near or adjoining the active site that may be recruited for ligand design.  相似文献   

20.
Recognition of double-stranded RNA by proteins and small molecules   总被引:7,自引:0,他引:7  
Molecular recognition of double-stranded RNA (dsRNA) is a key event for numerous biological pathways including the trafficking, editing, and maturation of cellular RNA, the interferon antiviral response, and RNA interference. Over the past several years, our laboratory has studied proteins and small molecules that bind dsRNA with the goal of understanding and controlling the binding selectivity. In this review, we discuss members of the dsRBM class of proteins that bind dsRNA. The dsRBM is an approximately 70 amino acid sequence motif found in a variety of dsRNA-binding proteins. Recent results have led to a new appreciation of the ability of these proteins to bind selectivity to certain sites on dsRNA. This property is discussed in light of the RNA selectivity observed in the function of two proteins that contain dsRBMs, the RNA-dependent protein kinase (PKR) and an adenosine deaminase that acts on dsRNA (ADAR2). In addition, we introduce peptide-acridine conjugates (PACs), small molecules designed to control dsRBM-RNA interactions. These intercalating molecules bear variable peptide appendages at opposite edges of an acridine heterocycle. This design imparts the potential to exploit differences in groove characteristics and/or base-pair dynamics at binding sites to achieve selective binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号