共查询到11条相似文献,搜索用时 0 毫秒
1.
Nathanael H. Hunter Blair C. Bakula 《Journal of biomolecular structure & dynamics》2018,36(7):1893-1907
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed. 相似文献
2.
3.
The epididymis plays a crucial role in regulating the development of sperm motility and fertilizing capacity. Small non-coding RNAs (sncRNAs), especially microRNAs (miRNAs), can participate in the regulation of various physiological pathways. However, their abundance and whether they are involved in the regulation of gene expression in the human epididymis are unknown. By adopting the Solexa deep sequencing approach, we systematically investigated the sncRNAs in the adult human epididymis. A total of 4903 unique sequences representing 527 known miRNA were discovered. Eighteen novel miRNA genes encoding 23 mature miRNAs were also identified and the expression of some of them was confirmed by qRT-PCR. The presence of Piwi-interacting RNAs (piRNAs) in the library also adds to the diversity of the sncRNA population in the human epididymis. This research will contribute to a preliminary database for their functional study in male reproductive system. 相似文献
4.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization. 相似文献
5.
Beth M. Isaac Dan Ishihara Leora M. Nusblat Athanassios Dovas 《Experimental cell research》2010,316(20):3406-3416
Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher levels of WASP relative to N-WASP. To test whether N-WASP can compensate for the loss of WASP and restore actin cytoskeleton integrity, N-WASP was overexpressed in macrophages, in which endogenous WASP expression was reduced by short hairpin RNA (shWASP cells). Many of the defects associated with the loss of WASP, such as podosome-dependent matrix degradation and chemotaxis were corrected when N-WASP was expressed at equimolar level to that of the wild-type WASP. Furthermore, the ability of N-WASP to partially compensate for the loss of WASP may be physiologically relevant since activated murine WASP-deficient peritoneal macrophages, which show enhanced N-WASP expression, also show an increase in matrix degradation. Our study suggests that expression levels of WASP and N-WASP may influence their roles in actin cytoskeleton rearrangement and shed light to the complex intertwining roles WASP and N-WASP play in macrophages. 相似文献
6.
Li Xing Meijuan Niu Xia ZhaoLawrence Kleiman 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells.Methods
The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A–RNA interaction and RNA helicase A-stimulated viral RNA processes.Results
Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNALys3 annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A–HIV-1 RNA interaction in the cells.Conclusions
The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A.General significance
The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro. 相似文献7.
Sara F. Fernandes Rita Fior Francisco Pinto Margarida Gama-Carvalho Leonor Saúde 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2018,1861(9):783-793
The formation of distinct 3′UTRs through alternative polyadenylation is a mechanism of gene expression regulation that has been implicated in many physiological and pathological processes. However, its functions in the context of vertebrate embryonic development have been largely unaddressed, in particular with a gene-specific focus. Here we show that the most abundant 3′UTR for the zebrafish fgf8a gene in the developing embryo mediates a strong translational repression, when compared to a more sparsely used alternative 3′UTR, which supports a higher translation efficiency. By inducing a shift in the selection efficiency of the associated polyadenylation sites, we show a temporally and spatially specific impact of fgf8a 3′UTR usage on embryogenesis, in particular at late stages during sensory system development. In addition, we identified a previously undescribed role for Fgf signalling in the initial stages of superficial retinal vascularization. These results reveal a critical functional importance of gene-specific alternative 3′UTRs in vertebrate embryonic development. 相似文献
8.
9.
10.