首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.  相似文献   

2.
The discovery of a letter intentionally filled with dried Bacillus anthracis spores in the office of a United States senator prompted the collection and quarantine of all mail in congressional buildings. This mail was subsequently searched for additional intentionally contaminated letters. A microbiological sampling strategy was used to locate heavy contamination within the 642 separate plastic bags containing the mail. Swab sampling identified 20 bags for manual and visual examination. Air sampling within the 20 bags indicated that one bag was orders of magnitude more contaminated than all the others. This bag contained a letter addressed to Senator Patrick Leahy that had been loaded with dried B. anthracis spores. Microbiological sampling of compartmentalized batches of mail proved to be efficient and relatively safe. Efficiency was increased by inoculating culture media in the hot zone rather than transferring swab samples to a laboratory for inoculation. All mail sampling was complete within 4 days with minimal contamination of the sampling environment or personnel. However, physically handling the intentionally contaminated letter proved to be exceptionally hazardous, as did sorting of cross-contaminated mail, which resulted in generation of hazardous aerosol and extensive contamination of protective clothing. Nearly 8 × 106 CFU was removed from the most highly cross-contaminated piece of mail found. Tracking data indicated that this and other heavily contaminated envelopes had been processed through the same mail sorting equipment as, and within 1 s of, two intentionally contaminated letters.  相似文献   

3.
Superdormant spores of Bacillus subtilis and Bacillus megaterium were isolated in 4 to 12% yields following germination with high nutrient levels that activated one or two germinant receptors. These superdormant spores did not germinate with the initial nutrients or those that stimulated other germinant receptors, and the superdormant spores'' defect was not genetic. The superdormant spores did, however, germinate with Ca2+-dipicolinic acid or dodecylamine. Although these superdormant spores did not germinate with high levels of nutrients that activated one or two nutrient germinant receptors, they germinated with nutrient mixtures that activated more receptors, and using high levels of nutrient mixtures activating more germinant receptors decreased superdormant spore yields. The use of moderate nutrient levels to isolate superdormant spores increased their yields; the resultant spores germinated poorly with the initial moderate nutrient concentrations, but they germinated well with high nutrient concentrations. These findings suggest that the levels of superdormant spores in populations depend on the germination conditions used, with fewer superdormant spores isolated when better germination conditions are used. These findings further suggest that superdormant spores require an increased signal for triggering spore germination compared to most spores in populations. One factor determining whether a spore is superdormant is its level of germinant receptors, since spore populations with higher levels of germinant receptors yielded lower levels of superdormant spores. A second important factor may be heat activation of spore populations, since yields of superdormant spores from non-heat-activated spore populations were higher than those from optimally activated spores.Spores of various Bacillus species are formed in sporulation and are metabolically dormant and very resistant to environmental stress factors (21, 37). While such spores can remain in this dormant, resistant state for long periods, they can return to life rapidly through the process of germination, during which the spore''s dormancy and extreme resistance are lost (36). Spore germination has long been of intrinsic interest, and continues to attract applied interest, because (i) spores of a number of Bacillus species are major agents of food spoilage and food-borne disease and (ii) spores of Bacillus anthracis are a major bioterrorism agent. Since spores are much easier to kill after they have germinated, it would be advantageous to trigger germination of spores in foods or the environment and then readily inactivate the much less resistant germinated spores. However, this simple strategy has been largely nullified because germination of spore populations is heterogeneous, with some spores, often called superdormant spores, germinating extremely slowly and potentially coming back to life long after treatments are applied to inactivate germinated spores (8, 9, 16). The concern over superdormant spores in populations also affects decisions such as how long individuals exposed to B. anthracis spores should continue to take antibiotics, since spores could remain dormant in an individual for long periods and then germinate and cause disease (3, 11).In many species, spore germination can be increased by a prior activation step, generally a sublethal heat treatment, although the changes taking place during heat activation are not known (16). Spore germination in Bacillus species is normally triggered by nutrients such as glucose, amino acids, or purine ribosides (27, 36). These agents bind to germinant receptors located in the spore''s inner membrane that are specific for particular nutrients. In Bacillus subtilis, the GerA receptor responds to l-alanine or l-valine, while the GerB and GerK receptors act cooperatively to respond to a mixture of l-asparagine (or l-alanine), d-glucose, d-fructose and K+ ions (AGFK [or Ala-GFK]) (1, 27, 36). There are even more functional germinant receptors in Bacillus megaterium spores, and these respond to d-glucose, l-proline, l-leucine, l-valine, or even salts, such as KBr (6). Glucose appears to trigger germination of B. megaterium spores through either of two germinant receptors, GerU or GerVB, while l-proline triggers germination through only the GerVB receptor, and KBr germination is greatly decreased by the loss of either GerU or GerVB (6). Nutrient binding to the germinant receptors triggers the release of small molecules from the spore core, most notably the huge depot (∼10% of spore dry weight) of pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) present in spores predominantly as a 1:1 diluted chelate with Ca2+ (Ca-DPA) (35, 36). Ca-DPA release then triggers the activation of one of two redundant cortex lytic enzymes (CLEs) that degrade the spore''s peptidoglycan cortex, and cortex degradation completes spore germination and allows progression into outgrowth and then vegetative growth (27, 33, 36).Spore germination can also be triggered by nonnutrient agents, including Ca-DPA and cationic surfactants (27, 33, 36). With B. subtilis spores, Ca-DPA triggers germination by activating one particular CLE, termed CwlJ, and bypasses the spore''s germinant receptors. Germination by the cationic surfactant dodecylamine also bypasses the germinant receptors, and this agent appears to release small molecules including Ca-DPA from the spore core either by opening a normal channel in the spore''s inner membrane for Ca-DPA and other small molecules or by creating such a channel (31, 38, 39).Almost all work on the specifics of the germination of spores of Bacillus species has focused on the majority of spores in populations, and little detailed attention has been paid to that minority of spores that either fail to germinate or germinate extremely slowly. However, it is these latter spores that are most important in unraveling the cause of superdormancy and perhaps suggesting a means to germinate and thus easily inactivate such superdormant spores. Consequently, we have undertaken the task of isolating superdormant spores from spore populations, using buoyant density centrifugation to separate dormant spores from germinated spores. The properties of these purified superdormant spores were then studied, and this information has suggested some reason(s) for spore superdormancy.  相似文献   

4.
Bacillus sp. strain SG-1 is a marine bacterial species isolated from a near-shore manganese sediment sample. Its mature dormant spores promote the oxidation of Mn2+ to MnO2. By quantifying the amounts of immobilized and oxidized manganese, it was established that bound manganese was almost instantaneously oxidized. When the final oxidation of manganese by the spores was partly inhibited by NaN3 or anaerobiosis, an equivalent decrease in manganese immobilization was observed. After formation of a certain amount of MnO2 by the spores, the oxidation rate decreased. A maximal encrustment was observed after which no further oxidation occurred. The oxidizing activity could be recovered by reduction of the MnO2 with hydroxylamine. Once the spores were encrusted, they could bind significant amounts of manganese, even when no oxidation occurred. Purified spore coat preparations oxidized manganese at the same rate as intact spores. During the oxidation of manganese in spore coat preparations, molecular oxygen was consumed and protons were liberated. The data indicate that a spore coat component promoted the oxidation of Mn2+ in a biologically catalyzed process, after adsorption of the ion to incipiently formed MnO2. Eventually, when large amounts of MnO2 were allowed to accumulate, the active sites were masked and further oxidation was prevented.  相似文献   

5.
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised.  相似文献   

6.
Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.  相似文献   

7.
When exposed to 254-nm UV, spores of Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem exhibited 3.2-log reductions in viability at UV fluences of 60, 140, and 190 J/m2, respectively, and demonstrated UV inactivation kinetics similar to those observed for endospores of DNA repair-defective mutant Bacillus subtilis strains used as biodosimetry surrogates. The results indicate that spores of Encephalitozoon spp. are readily inactivated at low UV fluences and that spores of UV-sensitive B. subtilis strains can be useful surrogates in evaluating UV reactor performance.  相似文献   

8.
9.
Spores of Bacillus species are said to be committed when they continue through nutrient germination even when germinants are removed or their binding to spores'' nutrient germinant receptors (GRs) is both reversed and inhibited. Measurement of commitment and the subsequent release of dipicolinic acid (DPA) during nutrient germination of spores of Bacillus cereus and Bacillus subtilis showed that heat activation, increased nutrient germinant concentrations, and higher average levels of GRs/spore significantly decreased the times needed for commitment, as well as lag times between commitment and DPA release. These lag times were also decreased dramatically by the action of one of the spores'' two redundant cortex lytic enzymes (CLEs), CwlJ, but not by the other CLE, SleB, and CwlJ action did not affect the timing of commitment. The timing of commitment and the lag time between commitment and DPA release were also dependent on the specific GR activated to cause spore germination. For spore populations, the lag times between commitment and DPA release were increased significantly in spores that germinated late compared to those that germinated early, and individual spores that germinated late may have had lower appropriate GR levels/spore than spores that germinated early. These findings together provide new insight into the commitment step in spore germination and suggest several factors that may contribute to the large heterogeneity among the timings of various events in the germination of individual spores in spore populations.Spores of Bacillus species can remain dormant for long times and are extremely resistant to a variety of environmental stresses (26). However, under appropriate conditions, normally upon the binding of specific nutrients to spores'' nutrient germinant receptors (GRs), spores can come back to active growth through a process called germination followed by outgrowth (19, 20, 25, 26). Germination of Bacillus subtilis spores can be triggered by l-alanine or l-valine or a combination of l-asparagine, d-glucose, d-fructose, and K+ (AGFK). These nutrient germinants trigger germination by binding to and interacting with GRs that have been localized to the spore''s inner membrane (12, 20). l-Alanine and l-valine bind to the GerA GR, while the AGFK mixture triggers germination by interacting with both the GerB and GerK GRs (25). Normally, l-asparagine alone does not trigger B. subtilis spore germination. However, a mutant form of the GerB GR, termed GerB*, displays altered germinant specificity such that l-asparagine alone will trigger the germination of gerB* mutant spores (1, 18).A number of events occur in a defined sequence during spore germination. Initially, exposure of spores to nutrient germinants causes a reaction that commits spores to germinate, even if the germinant is removed or displaced from its cognate GR (7, 10, 21, 27, 28). This commitment step is followed by release of monovalent cations, as well as the spore core''s large pool of pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) along with divalent cations, predominantly Ca2+, that are chelated with DPA (Ca-DPA). In Bacillus spores, the release of Ca-DPA triggers the hydrolysis of spores'' peptidoglycan cortex by either of two cortex lytic enzymes (CLEs), CwlJ and SleB (11, 16, 23). CwlJ is activated during germination by Ca-DPA as it is being released from individual spores, while SleB activation requires that most Ca-DPA be released (14, 16, 17). Cortex hydrolysis, in turn, allows the spore core to expand and fully hydrate, which leads to activation of enzymes and initiation of metabolism in the spore core (21, 25).As noted above, commitment is the first event that can be assessed during spore germination, although the precise mechanism of commitment is not known. Since much has been learned about proteins important in spore germination in the many years since commitment was last studied (25, 26), it seemed worth reexamining commitment, with the goal of determining those factors that influence this step in the germination process. Knowledge of factors important in determining kinetics of commitment could then lead to an understanding of what is involved in this reaction.Kinetic analysis of spore germination, as well as commitment, has mostly been based on the decrease in optical density at 600 nm (OD600) of spore suspensions, which monitors a combination of events that occur well after commitment, including DPA release, cortex hydrolysis, and core swelling (25-27). In the current work, we have used a germination assay that measures DPA release, an early event in spore germination, and have automated this assay to allow routine measurement of commitment, as well as DPA release from large numbers of spore samples simultaneously. This assay has allowed comparison of the kinetics of DPA release and commitment during germination and study of the effects of heat activation, germinant concentration, GR levels, and CLEs on commitment.  相似文献   

10.
Superdormant spores of Bacillus cereus and Bacillus subtilis germinated just as well as dormant spores with pressures of 150 or 500 MPa and with or without heat activation. Superdormant B. subtilis spores also germinated as well as dormant spores with peptidoglycan fragments or bryostatin, a Ser/Thr protein kinase activator.Spores of Bacillus species are formed in sporulation, a process that is generally triggered by starvation for one or more nutrients (13, 19). These spores are metabolically dormant and extremely resistant to a large variety of environmental stresses, including heat, radiation, and toxic chemicals, and as a consequence of these properties, these spores can remain viable in their dormant state for many years (13, 18, 19). However, spores are constantly sensing their environment, and if nutrients return, the spores can rapidly return to growth through the process of spore germination (17). Spore germination is generally triggered by specific nutrients that bind to nutrient germinant receptors, with this binding alone somehow triggering germination. However, spore germination can also be triggered by many non-nutrient agents, including cationic surfactants such as dodecylamine, a 1:1 complex of Ca2+ with pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA], a major spore small molecule), very high pressures, specific peptidoglycan fragments, and bryostatin, an activator of Ser/Thr protein kinases (17, 19, 20). For nutrient germinants in particular, spore germination is also potentiated by a prior sublethal heat treatment termed heat activation (17).While normally the great majority of spores in populations germinate relatively rapidly in response to nutrient germinants, a small percentage of spores germinate extremely slowly. These spores that are refractory to nutrient germination have been termed superdormant spores and are a major concern for the food industry (8). Recently superdormant spores of three Bacillus species have been isolated by repeated germination of spore populations with specific nutrient germinants and isolation of remaining dormant spores (5, 6). These superdormant spores germinate extremely poorly with the nutrient germinants used in superdormant spore isolation, as well as with other nutrient germinants. All of the specific defects leading to spore superdormancy are not known, although an increased level of receptors for specific nutrient germinants decreases levels of superdormant spores obtained with the nutrients that are ligands for these receptors (5). Superdormant spores also have significantly higher temperature optima for heat activation of nutrient germination than the spore population as a whole (7).In contrast to the poor germination of superdormant spores with nutrient germinants, superdormant spores germinate normally with dodecylamine and Ca-DPA (5, 6). This is consistent with possible roles of nutrient germinant receptor levels and/or heat activation temperature optima in affecting spore superdormancy, since neither dodecylamine nor Ca-DPA triggers Bacillus spore germination through nutrient germinant receptors, and germination with these agents is also not stimulated by heat activation (11, 15, 17). However, the effects of high pressures, peptidoglycan fragments, and bryostatin, all of which almost certainly trigger spore germination by mechanisms at least somewhat different than triggering of germination by nutrients, dodecylamine, and Ca-DPA (2, 3, 11, 15, 20, 22, 23), have not been tested for their effects on superdormant spores. Consequently, we have compared the germination of dormant and superdormant spores of two Bacillus species by high-pressures, peptidoglycan fragments, and bryostatin.The spores used in this work were from Bacillus subtilis PS533 (16), a derivative of strain 168 that also carries plasmid pUB110, providing resistance to kanamycin (10 μg/ml), and Bacillus cereus T (originally obtained from H. O. Halvorson). Spores of these strains were prepared and purified as described previously (6, 10, 12). Superdormant spores of B. subtilis were prepared by germination following heat activation at 75°C for 30 min by two germination treatments at 37°C with 10 mM l-valine for 2 h, followed by isolation of remaining dormant spores, all as described previously (5, 10, 12). These superdormant spores germinated extremely poorly with 10 mM valine at 37°C, giving ≤10% germination in 2 h at 37°C, while the initial spore population exhibited >95% germination under the same conditions (data not shown). Superdormant B. cereus spores were isolated similarly, although heat activation was at 65°C for 30 min and the germinant was 5 mM inosine as described previously (6). These superdormant B. cereus spores exhibited <5% germination with inosine in 2 h at 37°C compared to the >95% germination of the initial dormant spores under the same conditions (data not shown).  相似文献   

11.
The effect of temperature on germination of spores of Bacillus subyilis, B. megaterium. B. cereus, Clostridium sporogenes, Cl. butyricum and Cl. bifermentans was studied. At lower temperatures (+5°C to +10°C) the three Glostridium species germinated to a less extent than the three Bacillus. species. The optimum temperature for germination of the six species varied between +35°C and +45°C. The Clostridium species were more tolerant to heat than the Bacillus species.  相似文献   

12.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

13.
Peptide Synthesis by Extracts from Bacillus subtilis Spores   总被引:5,自引:5,他引:0  
Cell-free peptide synthesis by extracts from vegetative cells and spores of Bacillus subtilis was analyzed and compared. The initial rate of phenylalanine incorporation in a polyuridylate-directed system was found to be in a similar range for the two extracts. However, spore extracts frequently incorporated less total phenylalanine as did the vegetative cell system. Optimal conditions for amino acid incorporation by spore extracts were found to be similar to those of vegetative cell extracts. Polyphenylalanine synthesis was stimulated by preincubation of both extracts prior to the addition of polyuridylic acid (poly U) and labeled phenylalanine. Both systems showed a dependence on an energy-generating system and were inhibited by chloramphenicol and puromycin. Ribonuclease, but not deoxyribonuclease, inhibited the reaction significantly. The presence of methionine transfer ribonucleic acid (tRNA(F)) and methionyl-tRNA(F) transformylase was demonstrated in spore extracts. An analysis of several aminoacyl-tRNAs in spores revealed that the relative amounts of these tRNAs were similar to those found in vegetative cells. Only lysine tRNA was found to be present in relatively greater amounts in spores. These results indicate that dormant spores of B. subtilis contain the machinery for the translation of genetic information.  相似文献   

14.
Dual-trap laser tweezers Raman spectroscopy (LTRS) and elastic light scattering (ELS) were used to investigate dynamic processes during high-temperature treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis in water. Major conclusions from these studies included the following. (i) After spores of all three species were added to water at 80 to 90°C, the level of the 1:1 complex of Ca2+ and dipicolinic acid (CaDPA; ∼25% of the dry weight of the spore core) in individual spores remained relatively constant during a highly variable lag time (Tlag), and then CaDPA was released within 1 to 2 min. (ii) The Tlag values prior to rapid CaDPA release and thus the times for wet-heat killing of individual spores of all three species were very heterogeneous. (iii) The heterogeneity in kinetics of wet-heat killing of individual spores was not due to differences in the microscopic physical environments during heat treatment. (iv) During the wet-heat treatment of spores of all three species, spore protein denaturation largely but not completely accompanied rapid CaDPA release, as some changes in protein structure preceded rapid CaDPA release. (v) Changes in the ELS from individual spores of all three species were strongly correlated with the release of CaDPA. The ELS intensities of B. cereus and B. megaterium spores decreased gradually and reached minima at T1 when ∼80% of spore CaDPA was released, then increased rapidly until T2 when full CaDPA release was complete, and then remained nearly constant. The ELS intensity of B. subtilis spores showed similar features, although the intensity changed minimally, if at all, prior to T1. (vi) Carotenoids in B. megaterium spores'' inner membranes exhibited two changes during heat treatment. First, the carotenoid''s two Raman bands at 1,155 and 1,516 cm−1 decreased rapidly to a low value and to zero, respectively, well before Tlag, and then the residual 1,155-cm−1 band disappeared, in parallel with the rapid CaDPA release beginning at Tlag.Bacterial spores of Bacillus species are formed in sporulation and are metabolically dormant and extremely resistant to a variety of harsh conditions, including heat, radiation, and many toxic chemicals (37). Since spores of these species are generally present in foodstuffs and cause food spoilage and food-borne disease (37, 38), there has long been interest in the mechanisms of both spore resistance and spore killing, especially for wet heat, the agent most commonly used to kill spores. The killing of dormant spores by wet heat generally requires temperatures about 40°C higher than those for the killing of growing cells of the same strain (37, 43). A number of factors influence spore wet-heat resistance, with a major factor being the spore core''s water content, as spores with higher core water content are less wet-heat resistant than are spores with lower core water (15, 25). The high level of pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) and the types of its associated divalent cations, predominantly Ca2+, that comprise ∼25% of the dry weight of the core also contribute to spore wet-heat resistance, although how low core water content and CaDPA protect spores against wet heat is not known. The protection of spore DNA against depurination by its saturation with a group of α/β-type small, acid-soluble spore proteins also contributes to spore wet-heat resistance (14, 23, 33, 37).Despite knowledge of a number of factors important in spore wet-heat resistance, the mechanism for wet-heat killing of spores is not known. Wet heat does not kill spores by DNA damage or oxidative damage (35, 37). Instead, spore killing by this agent is associated with protein denaturation and enzyme inactivation (2, 7, 44), although specific proteins for which damage causes spore death have not been identified. Wet-heat treatment also often results in the release of the spore core''s large depot of CaDPA. The mechanism for this CaDPA release is not known but is presumably associated with the rupture of the spore''s inner membrane (7). In addition, the relationship between protein denaturation and CaDPA release is not clear, although recent work suggests that significant protein denaturation can occur prior to CaDPA release (7). Almost all information on spore killing by moist heat has been obtained with spore populations, and essentially nothing is known about the behavior of individual spores exposed to potentially lethal temperatures in water. Given the likely heterogeneity of spores in populations, in particular in their wet-heat resistances (16, 18, 39, 40), it could be most informative to analyze the behavior of individual spores exposed to high temperatures in water.Raman spectroscopy is widely used in biochemical studies, as this technique has high sensitivity and responds rapidly to subtle changes in molecule structure (1, 22, 31). In addition, when Raman spectroscopy is combined with confocal microscopy and optical tweezers, the resultant laser tweezers Raman spectroscopy (LTRS) allows the nondestructive, noninvasive detection of biochemical processes at the single-cell level (9, 10, 19, 46). Indeed, LTRS has been used to analyze the DPA level and the germination of individual Bacillus spores (5, 19, 30). In order to obtain information more rapidly, dual- and multitrap laser tweezers have been developed to allow multiple individual cells or particles to be analyzed simultaneously (11, 13, 24, 27), and the dual trap has been used to measure the hydrodynamic cross-correlations of two particles (24). In addition to Raman scattering, the elastic light scattering (ELS) from trapped individual cells also provides valuable information on cell shape, orientation, refractive index, and morphology (12, 45) and has been used to monitor spore germination dynamics as well (30).In this work, we report studies of wet-heat treatment of individual spores of three different Bacillus species by dual-trap LTRS and ELS. A number of important processes related to wet-heat inactivation of spores, including CaDPA release and protein denaturation, and the correlation between these processes were investigated by monitoring changes in Raman scattering at CaDPA-, protein structure-, and phenylalanine-specific bands and changes in ELS intensity.  相似文献   

15.
As part of an effort to develop detectors for selected species of bacterial spores, we screened phage display peptide libraries for 7- and 12-mer peptides that bind tightly to spores of Bacillus subtilis. All of the peptides isolated contained the sequence Asn-His-Phe-Leu at the amino terminus and exhibited clear preferences for other amino acids, especially Pro, at positions 5 to 7. We demonstrated that the sequence Asn-His-Phe-Leu-Pro (but not Asn-His-Phe-Leu) was sufficient for tight spore binding. We observed equal 7-mer peptide binding to spores of B. subtilis and its most closely related species, Bacillus amyloliquefaciens, and slightly weaker binding to spores of the closely related species Bacillus globigii. These three species comprise one branch on the Bacillus phylogenetic tree. We did not detect peptide binding to spores of several Bacillus species located on adjacent and nearby branches of the phylogenetic tree nor to vegetative cells of B. subtilis. The sequence Asn-His-Phe-Leu-Pro was used to identify B. subtilis proteins that may employ this peptide for docking to the outer surface of the forespore during spore coat assembly and/or maturation. One such protein, SpsC, appears to be involved in the synthesis of polysaccharide on the spore coat. SpsC contains the Asn-His-Phe-Leu-Pro sequence at positions 6 to 10, and the first five residues of SpsC apparently must be removed to allow spore binding. Finally, we discuss the use of peptide ligands for bacterial detection and the use of short peptide sequences for targeting proteins during spore formation.  相似文献   

16.
Spores of Bacillus species can remain in their dormant and resistant states for years, but exposure to agents such as specific nutrients can cause spores'' return to life within minutes in the process of germination. This process requires a number of spore-specific proteins, most of which are in or associated with the inner spore membrane (IM). These proteins include the (i) germinant receptors (GRs) that respond to nutrient germinants, (ii) GerD protein, which is essential for GR-dependent germination, (iii) SpoVA proteins that form a channel in spores'' IM through which the spore core''s huge depot of dipicolinic acid is released during germination, and (iv) cortex-lytic enzymes (CLEs) that degrade the large peptidoglycan cortex layer, allowing the spore core to take up much water and swell, thus completing spore germination. While much has been learned about nutrient germination, major questions remain unanswered, including the following. (i) How do nutrient germinants penetrate through spores'' outer layers to access GRs in the IM? (ii) What happens during the highly variable and often long lag period between the exposure of spores to nutrient germinants and the commitment of spores to germinate? (iii) What do GRs and GerD do, and how do these proteins interact? (iv) What is the structure of the SpoVA channel in spores'' IM, and how is this channel gated? (v) What is the precise state of the spore IM, which has a number of novel properties even though its lipid composition is very similar to that of growing cells? (vi) How is CLE activity regulated such that these enzymes act only when germination has been initiated? (vii) And finally, how does the germination of spores of clostridia compare with that of spores of bacilli?  相似文献   

17.
This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by 31P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼ 6.3 to 7.8, or at 4°C in spent sporulation medium caused no significant changes in ribonucleotide or 3PGA levels. Stage I germinated spores of Bacillus megaterium that had slightly increased core water content and a core pH of 7.8 also did not degrade 3PGA and accumulated no ribonucleotides, including ATP, during incubation for 8 days at 37°C in buffered saline. In contrast, spores incubated for up to 30 days at 37 or 50°C in spent sporulation medium degraded significant amounts of 3PGA and accumulated ribonucleotides, indicative of RNA degradation, and these processes were increased in B. megaterium spores with a core pH of ∼7.8. However, no ATP was accumulated in these spores. These data indicate that spores of Bacillus species stored in water or buffer at low or high temperatures exhibited minimal, if any, metabolism of endogenous compounds, even when the spore core pH was 7.8 and core water content was increased somewhat. However, there was some metabolism in spores stored in spent sporulation medium.  相似文献   

18.
Purified superdormant spores of Bacillus cereus, B. megaterium, and B. subtilis isolated after optimal heat activation of dormant spores and subsequent germination with inosine, d-glucose, or l-valine, respectively, germinate very poorly with the original germinants used to remove dormant spores from spore populations, thus allowing isolation of the superdormant spores, and even with alternate germinants. However, these superdormant spores exhibited significant germination with the original or alternate germinants if the spores were heat activated at temperatures 8 to 15°C higher than the optimal temperatures for the original dormant spores, although the levels of superdormant spore germination were not as great as those of dormant spores. Use of mixtures of original and alternate germinants lowered the heat activation temperature optima for both dormant and superdormant spores. The superdormant spores had higher wet-heat resistance and lower core water content than the original dormant spore populations, and the environment of dipicolinic acid in the core of superdormant spores as determined by Raman spectroscopy of individual spores differed from that in dormant spores. These results provide new information about the germination, heat activation optima, and wet-heat resistance of superdormant spores and the heterogeneity in these properties between individual members of dormant spore populations.Spores of Bacillus species are formed in sporulation and are metabolically dormant and extremely resistant to a variety of stress factors (31, 32). While spores can remain dormant for long periods, if given the proper stimulus, they can rapidly “return to life” in the process of spore germination followed by outgrowth (30). Since spores are generally present in significant amounts on many foodstuffs and growing cells of a number of Bacillus species are significant agents of food spoilage and food-borne disease (32), there is continued applied interest in spore resistance and germination. While dormant spores can be killed by a treatment such as wet heat, this requires high temperatures that are costly and detrimental to food quality. Consequently, there has long been interest in triggering spore germination in foodstuffs, since germinated spores have lost the extreme resistance of dormant spores and are relatively easy to kill. However, this strategy has been difficult to apply because of the significant heterogeneity in germination rates between individual spores in populations. One reflection of this heterogeneity is the extremely variable lag times following addition of germinants but prior to initiation of germination events; while these lag times can vary from 10 to 30 min for most spores in populations, some spores have lag times of many hours or even many days (2, 12, 13, 15, 25). The spores that are extremely slow to germinate have been termed superdormant spores, and populations of superdormant spores have recently been isolated from three Bacillus species, and their germination properties characterized (9, 10). These superdormant spores germinate extremely poorly with the original germinants used to remove dormant spores from spore populations, thus allowing superdormant spore isolation, and also poorly with a number of other germinants, in particular, germinants that target nutrient germinant receptors different than those activated to isolate the superdormant spores. However, the superdormant spores germinate reasonably well with mixtures of nutrient germinants that target multiple germinant receptors. All reasons for spore superdormancy are not known, but one contributing factor is the number of nutrient germinant receptors in the spore''s inner membrane that trigger spore germination by binding to nutrient germinants (9). The levels of these receptors are most likely in the tens of molecules per spore (24), and thus stochastic variation in receptor numbers might result in some spores with such low receptor numbers that these spores germinate very poorly (23). Indeed, 20- to 200-fold elevated levels of at least one nutrient germinant receptor greatly decreases yields of superdormant spores of Bacillus subtilis (9).Spores of Bacillus species generally exhibit a requirement for an activation step in order to exhibit maximum germination (17). Usually this activation is a sublethal heat treatment that for a spore population exhibits an optimum of 60 to 100°C depending on the species. Spores are also extremely resistant to wet heat, generally requiring temperatures of 80 to 110°C to achieve rapid spore killing, with the major factor influencing the wet-heat resistance of spores of mesophilic strains being the spore core''s water content, which can be as low as 30% of wet weight as water in a fully hydrated spore (8, 19, 27, 28, 31). Invariably, increases in core water content are associated with a decrease in spore wet-heat resistance (8, 19, 22, 25). While spore populations most often exhibit log-linear kinetics of wet-heat killing, the observation of tailing in such killing curves at high levels of killing is not uncommon, suggesting there is significant heterogeneity in the wet-heat resistances of individual spores in populations (27, 28). While there has been no comparable work suggesting that there is also heterogeneity in the temperature optima for heat activation of individual spores in populations, this certainly seems possible and indeed was suggested as one cause of spore superdormancy, as yields of superdormant spores from spore populations that are not heat activated are much higher (9, 10). Consequently, the current work was initiated to test the hypothesis that superdormant spores require heat activation temperatures that are higher than those of the original dormant spores. Once this was found to be the case, the wet-heat resistance and core water content of the superdormant and original dormant spores were compared, and the environment of the spore core''s major small molecule, pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) was assessed by Raman spectroscopy of individual spores.  相似文献   

19.
There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially.  相似文献   

20.
Germination of Bacillus spores with a high pressure (HP) of ∼150 MPa is via activation of spores'' germinant receptors (GRs). The HP germination of multiple individual Bacillus subtilis spores in a diamond anvil cell (DAC) was monitored with phase-contrast microscopy. Major conclusions were that (i) >95% of wild-type spores germinated in 40 min in a DAC at ∼150 MPa and 37°C but individual spores'' germination kinetics were heterogeneous; (ii) individual spores'' HP germination kinetic parameters were similar to those of nutrient-triggered germination with a variable lag time (Tlag) prior to a period of the rapid release (ΔTrelease) of the spores'' dipicolinic acid in a 1:1 chelate with Ca2+ (CaDPA); (iii) spore germination at 50 MPa had longer average Tlag values than that at ∼150 MPa, but the ΔTrelease values at the two pressures were identical and HPs of <10 MPa did not induce germination; (iv) B. subtilis spores that lacked the cortex-lytic enzyme CwlJ and that were germinated with an HP of 150 MPa exhibited average ΔTrelease values ∼15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and (v) the germination of wild-type spores given a ≥30-s 140-MPa HP pulse followed by a constant pressure of 1 MPa was the same as that of spores exposed to a constant pressure of 140 MPa that was continued for ≥35 min; (vi) however, after short 150-MPa HP pulses and incubation at 0.1 MPa (ambient pressure), spore germination stopped 5 to 10 min after the HP was released. These results suggest that an HP of ∼150 MPa for ≤30 s is sufficient to fully activate spores'' GRs, which remain activated at 1 MPa but can deactivate at ambient pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号