共查询到20条相似文献,搜索用时 78 毫秒
1.
Hematopoietic stem/progenitor cells (HSPCs), which are present in small numbers in hematopoietic tissues, can differentiate into all hematopoietic lineages and self-renew to maintain their undifferentiated phenotype. HSPCs are extremely sensitive to oxidative stressors such as anti-cancer agents, radiation, and the extensive accumulation of reactive oxygen species (ROS). The quiescence and stemness of HSPCs are maintained by the regulation of mitochondrial biogenesis, ROS, and energy homeostasis in a special microenvironment called the stem cell niche. The present study evaluated the relationship between the production of intracellular ROS and mitochondrial function during the proliferation and differentiation of X-irradiated CD34+ cells prepared from human placental/umbilical cord blood HSPCs. Highly purified CD34+ HSPCs exposed to X-rays were cultured in liquid and semi-solid medium supplemented with hematopoietic cytokines. X-irradiated CD34+ HSPCs treated with hematopoietic cytokines, which promote their proliferation and differentiation, exhibited dramatically suppressed cell growth and clonogenic potential. The amount of intracellular ROS in X-irradiated CD34+ HSPCs was significantly higher than that in non-irradiated cells during the culture period. However, neither the intracellular mitochondrial content nor the mitochondrial superoxide production was elevated in X-irradiated CD34+ HSPCs compared with non-irradiated cells. Radiation-induced gamma-H2AX expression was observed immediately following exposure to 4 Gy of X-rays and gradually decreased during the culture period. This study reveals that X-irradiation can increase persistent intracellular ROS in human CD34+ HSPCs, which may not result from mitochondrial ROS due to mitochondrial dysfunction, and indicates that substantial DNA double-strand breakage can critically reduce the stem cell function. 相似文献
2.
《Cell cycle (Georgetown, Tex.)》2013,12(2):265-267
Blood-related cancers, or leukemias, have been shown to arise from a rare subset of cells that escape normal regulation and drive the formation and growth of the tumor. The finding that these so-called cancer stem cells, or leukemic stem cells (LSC), can be purified away from the other cells in the tumor allows their precise analysis to identify candidate molecules and regulatory pathways that play a role in progression, maintenance, and spreading of leukemias. The analyses of the other, numerically dominant, cells in the tumor, while also interesting, do not directly interrogate these key properties of malignancies. Mouse models of human myeloproliferative disorder and acute myelogenous leukemia have highlighted the remarkable conservation of disease mechanisms between both species. They can now be used to identify the LSC for each type of human leukemia and understand how they escape normal regulation and become malignant. Given the clinical importance of LSC identification, the insights gained through these approaches will quickly translate into clinical applications and lead to improved treatments for human leukemias. 相似文献
3.
4.
5.
Alain D. Silk Charles E. Gast Paige S. Davies Farnaz D. Fakhari Gretchen E. Vanderbeek Motomi Mori Melissa H. Wong 《PloS one》2013,8(1)
Following transplantation of hematopoietic lineage cells, genetic markers unique to the transplanted cells have been detected in non-hematopoietic recipient cells of human liver, vascular endothelium, intestinal epithelium and brain. The underlying mechanisms by which this occurs are unclear. Evidence from mice suggests it is due in part to fusion between cells of hematopoietic and non-hematopoietic origins; however, direct evidence for this in humans is scant. Here, by quantitative and statistical analysis of X- and Y-chromosome numbers in epithelial and non-epithelial intestinal cells from gender-mismatched hematopoietic cell transplant patients, we provide evidence that transplanted cells of the hematopoietic lineage incorporate into human intestinal epithelium through cell fusion. This is the first definitive identification of cell fusion between hematopoietic cells and any epithelial cell type in humans, and provides the basis for further understanding the physiological and potential pathological consequences of cell fusion in humans. 相似文献
6.
《Cell cycle (Georgetown, Tex.)》2013,12(3):218-224
Ras/Raf/MEK/ERK is a crucial pathway regulating cell cycle progression, apoptosis, and drug resistance. The Ras oncogene is frequently mutated in human cancer, which can result in the activation of the downstream Raf/MEK/ERK cascade leading to cell cycle progression in the absence of a growth stimulus. Raf-induced proliferation has been observed in hematopoietic cells. However, the mechanisms by which Raf affects cell cycle progression are not well described. To investigate the importance of Raf/MEK/ERK signaling in human hematopoietic cell growth, the effects of three different Raf genes, A-Raf, B-Raf and Raf-1, on cell cycle progression and regulatory gene expression were examined in TF-1 cells transformed to grow in response to b-estradiol-regulated DRaf:ER genes. Raf activation increased the expression of cyclin A, cyclin D, cyclin E, and p21Cip1, which are associated with G1 progression. Activated DRaf-1:ER and DA-Raf:ER but not DB-Raf:ER increased Cdk2 and Cdk4 kinase activity. The regulatory role of p16Ink4a, a potent Cdk4 kinase inhibitor, on the kinase activity of Cdk2 and Cdk4 was also examined. Raf induced p16Ink4a suppressor but this did not eliminate Cdk4 kinase activity. These results indicate that human hematopoietic cells transformed to grow in response to activated Raf can be used to elucidate the mechanisms by which various cell cycle regulatory molecules effect cell cycle progression. Furthermore, the differences that the various Raf isoforms have on Cdk4 activity and other cell cycle regulatory molecules can be determined in these cells. Key Words:Cell cycle, Raf, p21Cip1, p27Kip1, Cyclins, Cdks, Hematopoietic cells 相似文献
7.
目的研究RunX3基因对造血干细胞自我更新和分化能力的影响。方法流式细胞术测定小鼠骨髓干细胞和外周血单个核细胞的比例;通过竞争性骨髓移植实验检测RunX3转基因小鼠骨髓干细胞的功能。结果移植后来源于RunX3-/-小鼠骨髓干细胞供体的外周血细胞占总外周血细胞的比例与野生对照鼠相比无明显差异,移植后来源于RunX3-/-小鼠骨髓干细胞供体的外周血中髓系细胞占总外周血髓系细胞的比例较野生型对照鼠高。结论RunX3基因缺失对骨髓造血干细胞的自我更新没有影响,但其可能参与了骨髓造血干细胞的分化过程。 相似文献
8.
Ioanna-Eleni Symeonidou Panagiotis Kotsantis Vassilis Roukos Maria-Anna Rapsomaniki Hernán E. Grecco Philippe Bastiaens Stavros Taraviras Zoi Lygerou 《The Journal of biological chemistry》2013,288(50):35852-35867
Once-per-cell cycle replication is regulated through the assembly onto chromatin of multisubunit protein complexes that license DNA for a further round of replication. Licensing consists of the loading of the hexameric MCM2–7 complex onto chromatin during G1 phase and is dependent on the licensing factor Cdt1. In vitro experiments have suggested a two-step binding mode for minichromosome maintenance (MCM) proteins, with transient initial interactions converted to stable chromatin loading. Here, we assess MCM loading in live human cells using an in vivo licensing assay on the basis of fluorescence recovery after photobleaching of GFP-tagged MCM protein subunits through the cell cycle. We show that, in telophase, MCM2 and MCM4 maintain transient interactions with chromatin, exhibiting kinetics similar to Cdt1. These are converted to stable interactions from early G1 phase. The immobile fraction of MCM2 and MCM4 increases during G1 phase, suggestive of reiterative licensing. In late G1 phase, a large fraction of MCM proteins are loaded onto chromatin, with maximal licensing observed just prior to S phase onset. Fluorescence loss in photobleaching experiments show subnuclear concentrations of MCM-chromatin interactions that differ as G1 phase progresses and do not colocalize with sites of DNA synthesis in S phase. 相似文献
9.
10.
Cristina Peligero Jordi Argilaguet Roberto Güerri-Fernandez Berta Torres Carmen Ligero Pilar Colomer Montserrat Plana Hernando Knobel Felipe García Andreas Meyerhans 《PLoS pathogens》2015,11(12)
Blocking the PD-1/PD-L1 pathway has emerged as a potential therapy to restore impaired immune responses in human immunodeficiency virus (HIV)-infected individuals. Most reports have studied the impact of the PD-L1 blockade on effector cells and neglected possible effects on regulatory T cells (Treg cells), which play an essential role in balancing immunopathology and antiviral effector responses. The aim of this study was to define the consequences of ex vivo PD-L1 blockade on Treg cells from HIV-infected individuals. We observed that HIV infection led to an increase in PD-1+ and PD-L1+ Treg cells. This upregulation correlated with disease progression and decreased under antiretroviral treatment. Treg cells from viremic individuals had a particularly high PD-1 expression and impaired proliferative capacity in comparison with Treg cells from individuals under antiretroviral treatment. PD-L1 blockade restored the proliferative capacity of Treg cells from viremic individuals but had no effect on its suppressive capacity. Moreover, it increased the viral production in cell cultures from viremic individuals. This increase in viral production correlated with an increase in Treg cell percentage and a reduction in the CD4/Treg and CD8/Treg cell ratios. In contrast to the effect of the PD-L1 blockade on Treg cells from viremic individuals, we did not observe a significant effect on the proliferative capacity of Treg cells from individuals in whom viremia was controlled (either spontaneously or by antiretroviral treatment). However, PD-L1 blockade resulted in an increased proliferative capacity of HIV-specific-CD8 T cells in all subjects. Taken together, our findings suggest that manipulating PD-L1 in vivo can be expected to influence the net gain of effector function depending on the subject’s plasma viremia. 相似文献
11.
Human Immunodeficiency Virus Type 1 Vectors Efficiently Transduce Human Hematopoietic Stem Cells 总被引:9,自引:3,他引:9 下载免费PDF全文
Richard E. Sutton Henry T. M. Wu Richard Rigg Ernst Bhnlein Patrick O. Brown 《Journal of virology》1998,72(7):5781-5788
Lentiviruses are potentially advantageous compared to oncoretroviruses as gene transfer agents because they can infect nondividing cells. We demonstrate here that human immunodeficiency virus type 1 (HIV-1)-based vectors were highly efficient in transducing purified human hematopoietic stem cells. Transduction rates, measured by marker gene expression or by PCR of the integrated provirus, exceeded 50%, and transduction appeared to be independent of mitosis. Derivatives of HIV-1 were constructed to optimize the vector, and a deletion of most of Vif and Vpr was required to ensure the long-term persistence of transduced cells with relatively stable expression of the marker gene product. These results extend the utility of this lentivirus vector system. 相似文献
12.
Scott G. Kitchen Michael Bennett Zoran Gali? Joanne Kim Qing Xu Alan Young Alexis Lieberman Aviva Joseph Harris Goldstein Hwee Ng Otto Yang Jerome A. Zack 《PloS one》2009,4(12)
There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, “transgenic” human anti-HIV T cell receptor (TCR). Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control. 相似文献
13.
Anja Lüdtke Lisa Oestereich Paula Ruibal Stephanie Wurr Elisa Pallasch Sabrina Bockholt Wing Hang Ip Toni Rieger Sergio Gómez-Medina Carol Stocking Estefanía Rodríguez Stephan Günther César Mu?oz-Fontela 《Journal of virology》2015,89(8):4700-4704
The development of treatments for Ebola virus disease (EVD) has been hampered by the lack of small-animal models that mimick human disease. Here we show that mice with transplanted human hematopoetic stem cells reproduce features typical of EVD. Infection with Ebola virus was associated with viremia, cell damage, liver steatosis, signs of hemorrhage, and high lethality. Our study provides a small-animal model with human components for the development of EVD therapies. 相似文献
14.
15.
Human embryonic stem (hES) cells must be monitored and cared for in order to maintain healthy, undifferentiated cultures. At minimum, the cultures must be fed every day by performing a complete medium change to replenish lost nutrients and to keep the cultures free of unwanted differentiation factors. Although a small amount of differentiation is normal and expected in stem cell cultures, the culture should be routinely cleaned up by manually removing, or "picking" differentiated areas. Identifying and removing excess differentiation from hES cell cultures are essential techniques in the maintenance of a healthy population of cells.Download video file.(109M, mp4) 相似文献
16.
GATA-2作为GATA家族成员,其通过与靶基因的GATA结合位点结合,在造血系统发育中起关键性的调节作用。VentX是非洲爪蟾蜍xvent基因同源的哺乳动物基因,最近研究发现,其参与了中胚层的分化定型及造血干细胞的维持,并且在细胞衰老、增殖、分化及炎症反应等的调节中发挥功能。为探索VentX基因与GATA-2的关系及其对造血干细胞红系分化的调节功能,首先在K562细胞株中进行了VentX启动子分析,发现GATA-2可以通过结合到VentX启动子区两个GATA结合位点来顺式调控Vent X;继而在人骨髓(造血)干细胞中的实验显示,过表达GATA-2或过表达VentX,均可抑制CD34~+细胞的增殖,促进CD34~+细胞向红系分化。以上实验结果为临床红细胞来源提供了有价值的研究线索。 相似文献
17.
18.
Anders Boyd Jean-Luc Meynard Laurence Morand-Joubert Adrien Michon Franck Boccara Jean-Philippe Bastard Assia Samri Nabila Haddour Ziad Mallat Jacqueline Capeau Mo?se Desvarieux Pierre-Marie Girard for the Collaboration in HIV Inflammation Cardiovascular Disease Study 《PloS one》2014,9(11)
Background
While residual plasma viremia is commonly observed in HIV-infected patients undergoing antiretroviral treatment (ART), little is known about its subclinical consequences.Methods
This cross-sectional study included 47 male, never-smoking, non-diabetic patients with ≥4 years of ART and controlled HIV-replication (HIV-viral load, VL <20 copies/mL for ≥1 year). Residual HIV-VL was measured using an ultrasensitive assay (quantification limit: 1 copy/ml). Patients were categorized as having detectable (D; 1-20 copies/mL, n = 14) or undetectable (UD; <1 copies/mL, n = 33) HIV-VL. Linear regression was used to model the difference in total carotid intima-media thickness [c-IMT, measures averaged across common carotid artery (cca), bifurcation, and internal carotid artery] and cca-IMT alone across detection groups. Multivariable models were constructed for each endpoint in a forward-stepwise approach.Results
No significant differences were observed between viremia groups with respect to median ART-duration (9.6 years, IQR = 6.8–10.9), nadir CD4+T-cell (208/mm3, IQR = 143–378), and CD4+T-cell count (555/mm3, IQR = 458–707). Median adjusted inflammatory markers tended to be higher in patients with D- than UD-viremia, with differences in IL-10 being significant (p = 0.03). After adjustment on age, systolic blood pressure, and insulin resistance, mean cca-IMT was significantly lower in patients with undetectable (0.668 mm±0.010) versus detectable viremia (0.727 mm±0.015, p = 0.002). Cca-IMT was also independently associated with age and insulin resistance. Mean adjusted total c-IMT was no different between viremia groups (p = 0.2), however there was large variability in bifurcation c-IMT measurements.Conclusions
Higher cca-IMT was observed in patients with detectable, compared to undetectable, HIV-VL in never-smoking ART-controlled patients, suggesting that residual HIV viremia may be linked to atherosclerosis. 相似文献19.