首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A coordinated activation of distal forearm muscles allows the hand and fingers to be shaped during movement and grasp. However, little is known about how the muscle activation patterns are reflected in multi-channel mechanomyogram (MMG) signals. The purpose of this study is to determine if multi-site MMG signals exhibit distinctive patterns of forearm muscle activity. MMG signals were recorded from forearm muscle sites of nine able-bodied participants during hand movement. By using 14 features selected by a genetic algorithm and classified by a linear discriminant analysis classifier (LDA), we show that MMG patterns are specific and consistent enough to identify 7 ± 1 hand movements with an accuracy of 90 ± 4%. MMG-based movement recognition required a minimum of three recording sites. Further, by classifying five classes of contraction patterns with 98 ± 3% accuracy from MMG signals recorded from the residual limb of an amputee participant, we demonstrate that MMG shows pattern-specificity even in the absence of typical musculature. Multi-site monitoring of the RMS of MMG signals is suggested as a method of estimating the relative contributions of muscles to motor tasks. The patterns in MMG facilitate our understanding of the mechanical activity of muscles during movement.  相似文献   

2.
Patients with tremor can benefit from wearable robots managing their tremor during daily living. To achieve this, the interfaces controlling such robotic systems must be able to estimate the user's intention to move and to distinguish it from the undesired tremor. In this context, analysis of electroencephalographic activity is of special interest, since it provides information on the planning and execution of voluntary movements. This paper proposes an adaptive and asynchronous EEG-based system for online detection of the intention to move in patients with tremor. An experimental protocol with separated self-paced wrist extensions was used to test the ability of the system to detect the intervals preceding voluntary movements. Six healthy subjects and four essential tremor patients took part in the experiments. The system predicted 60 ± 10% of the movements with the control subjects and 42 ± 27% of the movements with the patients. The ratio of false detections was low in both cases (1.5 ± 0.1 and 1.4 ± 0.5 false activations per minute with the controls and patients, respectively). The prediction period with which the movements were detected was higher than in previous similar studies (1.06 ± 1.02 s for the controls and 1.01 ± 0.99 s with the patients). Additionally, an adaptive and fixed design were compared, and it was the adaptive design that had a higher number of movement detections. The system is expected to lead to further development of more natural interfaces between the assistive devices and the patients wearing them.  相似文献   

3.
IntroductionThis study examined the development of paced coordinated reaching characterized by the successful entrainment of the movement to an external pacer, synchronous muscle activations and movement smoothness.MethodsThirty children, 5–10 years of age, and ten adults were instructed to repeatedly reach for and move an object from a lower shelf to an upper shelf in time to a metronome. Surface electromyography data were recorded. Amplitude and cross-correlations were calculated on three muscle pairs crossing the shoulder and elbow. A motion capture system captured the space curve accelerations of hand, forearm and upper arm segments to quantify movement smoothness.ResultsThe 5–6 year old children showed the greatest amount of temporal variability, followed by 7–10 year olds and then the adults. Correlations between muscle pairs stabilizing the shoulder girdle were higher in each group as compared to the other two muscle pairs but the correlations for all pairs were consistently higher for adults. Movement smoothness for children 9–10 years of age was closer to an adult-like pattern with respect to control of the upper arm, but the hand segment had the greatest variability across groups.ConclusionsThe increased temporal variability and decreased movement smoothness of the hand and forearm segments suggest that control of more distal musculature may be more difficult in children. The neuromuscular strategies adopted by adults were more optimal than those adopted by children as reflected by smoother and more consistent reaching.  相似文献   

4.
The purpose of this experiment was to obtain electromyographic (EMG) activity from a sample of healthy shoulders to allow a reference database to be developed and used for comparison with pathological shoulders. Temporal and intensity shoulder muscle activation characteristics during a coronal plane abduction/adduction movement were evaluated in the dominant healthy shoulder of 24 subjects. Surface and intramuscular fine wire electrodes recorded EMG activity from 15 shoulder muscles (deltoid × 3, trapezius × 3, subscapularis × 2, latissimus dorsi, pectoralis major, pectoralis minor, supraspinatus, infraspinatus, serratus anterior and rhomboids) at 2000 Hz for 10 s whilst each subject performed 10 dynamic coronal plane abduction/adduction movements from 0° to 166° to 0° with a light dumbbell. Results revealed that supraspinatus (?.102 s before movement onset) initiated the movement with middle trapezius (?.019 s) and middle deltoid (?.014 s) also activated before the movement onset. Similar patterns were also found in the time of peak amplitude and %MVC with a pattern emerging where the prime movers (supraspinatus and middle deltoid) were among the first to reach peak amplitude or display the highest %MVC values. In conclusion, the most reproducible patterns of activation arose from the more prime mover muscle sites in all EMG variables analysed and although variability was present, there emerged ‘invariant characteristics’ that were considered ‘normal’ for this group of non pathological shoulders. The authors believe that the methodology and certain parts of the analysis in this study can be duplicated and used by future researchers who require a reference database of muscle activity for use as a control group in comparisons to their respective pathological shoulder group.  相似文献   

5.
BackgroundAuditory cues are known to alter movement kinematics in healthy people as well as in people with neurological conditions (e.g., Parkinson’s disease or stroke). Pacing movement to rhythmical constraints is known to change both the spatial and temporal features of movement. However, the effect of complexity of pacing on the spatial and temporal kinematic properties is still poorly understood. The current study investigated spatial and temporal aspects of movement (path and speed, respectively) and their integration while subjects followed simple isochronous or complex non-isochronous rhythmical constraints. Spatiotemporal decoupling was expected under the latter constraint.MethodsTen subjects performed point-to-point hand movements towards visual targets on the surface of a hemisphere, while following continuous auditory cues of different pace and meter. The spatial and temporal properties of movement were compared to geodesic paths and unimodal bell-shaped speed profiles, respectively. Multiple two-way RM-ANOVAs (pace [1–2 Hz] × meter [duple–triple]) were performed on the different kinematic variables calculated to assess hand deviations from the model data (p ? 0.05).ResultsAs expected, increasing pace resulted in straighter hand paths and smoother speed profiles. Meter, however, affected only the path (shorter and straighter under triple) without significantly changing speed. Such an effect was observed at the slow pace only.ConclusionsUnder simple rhythmic cues, an increase in pace causes spontaneous adjustments in spatial features (straighter hand paths) while preserving temporal ones (maximally-smoothed hand speeds). Complex rhythmical cues in contrast perturb spatiotemporal coupling and challenge movement control. These results may have important practical implications in motor rehabilitation.  相似文献   

6.
Traditionally, movement variability is considered an indicator for sensorimotor malfunctioning. However, functional movement variability is also a result of compensation mechanisms e.g. to account for prior movement deviations and is, therefore, crucial for stable movements. The aim of this study was to analyze functional variability during motor learning of a complex cyclic task.Thirteen young participants practised riding a Pedalo® slalom until they were able to complete the task without errors. Since trunk movements are controlled with high priority, we analyzed trunk kinematics as a result parameter. Since lower extremities affect the result parameter, foot, thigh and pelvis kinematics are considered execution parameters. The movement variability for result and execution parameters was determined for the first (poor performance), an intermediate (medium performance) and the last (good performance) training sessions. Furthermore, the variability ratio (execution/result parameter) was calculated as a measure of functional variability.Movement variability of the result parameter decreased significantly with increasing expertise. In contrast, movement variability of all execution parameters increased significantly from measurements representing poor to medium performance. No change from medium to good performance was found. Functional variability increased over time in all execution parameters.Since the movement variability of all execution parameters did not decrease with increasing Pedalo performance, applying a traditional interpretation approach of movement variability would have led to completely wrong conclusions. Possible mechanisms explaining the increased movement variability are discussed. The variability ratio seems to be the only parameter that can reveal improved sensorimotor functioning during all analyzed stages of motor learning.  相似文献   

7.
The preference for in-phase association of coupled cyclic limbs movements is well described (mirror-symmetrical patterns) and this is demonstrated by the ease of performing in-phase movements compared to anti-phase ones. The hypothesis of this study is that the easiest movement patterns are those with minor postural activity. The aim of this study was to describe postural activity in standing subjects in the sagittal and frontal planes during the execution of three upper limbs tasks (single arm, in-phase, anti-phase) at four different frequencies (from 0.6 to 1.2 Hz).We employed six infrared cameras for recording kinematics information, a force platform for measuring forces exerted on the ground, and a system for surface electromyography (SEMG). Outcome measures were: upper limb range of movement and relative-phase, centre of pressure displacement (COP), screw torque (Tz) exerted on the ground, and SEMG recordings of postural muscles (adductor longus, gluteus medius, rectus femoris, and biceps femoris).Our results show that in both the planes the in-phase task resulted in less COP displacement, torque production, and postural muscles involvement than the anti-phase and single arm tasks. This reduced need of postural control could explain the ease of performing in-phase coupled limb movements compared with anti-phase movements.  相似文献   

8.
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation.  相似文献   

9.
We investigated parasite establishment, subsequent larval development and antibody responses in gerbils, cotton rats and 4 inbred mouse strains until 16 weeks post inoculation (p.i.) with 200 eggs of Echinococcus multilocularis. The rate of parasite establishment in the liver determined at 4 weeks p.i. was highest in DBA/2, followed by AKR/N, C57BL/10 and C57BL/6 mice, whereas gerbils harboured few parasite foci. The accurate number of liver lesions in cotton rats could not be determined due to rapid growth and advanced multivesiculation of the parasite observed at 2 weeks p.i. The course of larval development was most advanced in DBA/2 mice with mature protoscolex formation at 16 weeks p.i., followed by AKR/N harbouring metacestodes with sparsely distributed immature protoscoleces. On the other hand, C57BL/6 and C57BL/10 mice had infertile metacestodes without any protoscolex formation. The parasite growth in mice was totally slower than those in gerbils and cotton rats. Specific IgG and IgM responses against 3 types of native crude antigens of larval E. multilocularis were evaluated using somatic extracts of and vesicle fluid of metacestode, and somatic extracts from purified protoscoleces. The 4 mouse strains demonstrated basically similar kinetics with apparent IgG and IgM increases at 9 weeks p.i. and thereafter, except C57BL/10, exhibited higher levels of IgM against crude antigens at some time point of infection. On the other hand, a follow-up determination of specific IgG and IgM levels against recombinant antigens from larval E. multilocularis revealed that each mouse strain showed different antibody-level kinetics. The findings in the present study demonstrate that the course of host–parasite interactions in primary alveolar echinococcosis, caused by larval E. multilocularis, clearly varies among intermediate host rodents with different genetic backgrounds.  相似文献   

10.
Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50 years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes.  相似文献   

11.
The purpose of this study was to determine whether incorporating arm movement into bridge exercise changes the electromyographic (EMG) activity of selected trunk muscles. Twenty healthy young men were recruited for this study. EMG data were collected for the rectus abdominis (RA), internal oblique (IO), erector spinae (ES), and multifidus (MF) muscles of the dominant side. During bridging, an experimental procedure was performed with two options: an intervention factor (with and without arm movement) and a bridging factor (on the floor and on a therapeutic ball). There were significant main effects for the intervention factor in the IO and ES and for the bridging factor in the IO. The RA and IO showed significant interaction between the intervention and bridge factors. Furthermore, IO/RA ratio during bridging on the floor (without arm movement, 2.05 ± 2.61; with arm movement, 3.24 ± 3.42) and bridging on the ball (without arm movement: 2.95 ± 3.87; with arm movement: 5.77 ± 4.85) showed significant main effects for, and significant interaction between the intervention and bridge factors. However, no significant main effects or interaction were found for the MF/ES ratio. These findings suggest that integrating arm movements during bridge exercises may be used to provide preferential loading to certain trunk muscle groups and that these effects may be better derived by performing bridge exercises on a therapeutic ball.  相似文献   

12.
Zelic G  Mottet D  Lagarde J 《PloS one》2012,7(2):e32308
Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler''s performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception.  相似文献   

13.
《Cancer epidemiology》2014,38(5):608-612
BackgroundRecently, a genome-wide association study conducted in Chinese reported a single nucleotide polymorphism at KIF1B, rs17401966, associated with the susceptibility of hepatitis B virus-related hepatocellular carcinoma. In this study, we aim to investigate the effect of rs17401966 on the prognosis of hepatitis B virus-related hepatocellular carcinoma patients at intermediate or advanced stages.MethodsThe SNP rs17401966 was genotyped using the TaqMan allelic discrimination assay in 414 intermediate or advanced hepatocellular carcinoma patients. Log-rank test and Cox proportional hazard models were used for survival analyses.ResultsPrevious studies have identified that the G allele of rs17401966 demonstrated protective effect for the susceptibility of hepatitis B virus-related hepatocellular carcinoma. Here we found that subjects carrying the G allele of rs17401966 was significantly associated with a better survival compared with those carrying the A allele (adjusted hazard ratio = 0.82, 95% confidence intervals = 0.68–0.99, P = 0.044 in an additive genetic model).ConclusionThe variant G allele of rs17401966 may be a favorable biomarker for the prognosis of intermediate or advanced hepatitis B virus-related hepatocellular carcinoma patients in this Chinese population.  相似文献   

14.
Dynamic movement trajectories of low mass systems have been shown to be predominantly influenced by passive viscoelastic joint forces and torques compared to momentum and inertia. The hand is comprised of 27 small mass segments. Because of the influence of the extrinsic finger muscles, the passive torques about each finger joint become a complex function dependent on the posture of multiple joints of the distal upper limb. However, biomechanical models implemented for the dynamic simulation of hand movements generally don’t extend proximally to include the wrist and distal upper limb. Thus, they cannot accurately represent these complex passive torques. The purpose of this short communication is to both describe a method to incorporate the length-dependent passive properties of the extrinsic index finger muscles into a biomechanical model of the upper limb and to demonstrate their influence on combined movement of the wrist and fingers. Leveraging a unique set of experimental data, that describes the net passive torque contributed by the extrinsic finger muscles about the metacarpophalangeal joint of the index finger as a function of both metacarpophalangeal and wrist postures, we simulated the length-dependent passive properties of the extrinsic finger muscles. Dynamic forward simulations demonstrate that a model including these properties passively exhibits coordinated movement between the wrist and finger joints, mimicking tenodesis, a behavior that is absent when the length-dependent properties are removed. This work emphasizes the importance of incorporating the length-dependent properties of the extrinsic finger muscles into biomechanical models to study healthy and impaired hand movements.  相似文献   

15.
Anatomical and empirical data suggest that deep and superficial muscles may have different functions for thoracic spine control. This study investigated thoracic paraspinal muscle activity during anticipatory postural adjustments associated with arm movement. Electromyographic (EMG) recordings were made from the right deep (multifidus/rotatores) and superficial (longissimus) muscles at T5, T8, and T11 levels using fine-wire electrodes. Ten healthy participants performed fast unilateral and bilateral flexion and extension arm movements in response to a light. EMG amplitude was measured during 25 ms epochs for 150 ms before and 400 ms after deltoid EMG onset. During arm flexion movements, multifidus and longissimus had two bursts of activity, one burst prior to deltoid and a late burst. With arm extension both muscles were active in a single burst after deltoid onset. There was differential activity with respect to direction of trunk rotation induced by arm movement. Right longissimus was most active with left arm movements and right multifidus was most active with right arm movements. All levels of the thorax responded similarly. We suggest that although thoracic multifidus and longissimus function similarly to control sagittal plane perturbations, these muscles are differentially active with rotational forces on the trunk.  相似文献   

16.
Combination of biplane fluoroscopy and CT-scan provides accurate 3D measurement of the acromiohumeral distance (AHD) during dynamic tasks. However, participants performed only two and six trials in previous experiments to respect the recommended radiation exposure per year. Our objective was to propose a technique to assess the AHD in 3D during dynamic tasks without this limitation. The AHD was computed from glenohumeral kinematics obtained using markers fitted to pins drilled into the scapula and the humerus combined with 3D bone geometry obtained using CT-scan. Four participants performed range-of-motion, daily-living, and sports activities. Sixty-six out of 158 trials performed by each participant were analyzed. Two participants were not considered due to experimental issues. AHD decreased with arm elevation. Overall, the smallest AHD occurred in abduction (1.1 mm (P1) and 1.2 mm (P2)). The smallest AHD were 2.4 mm (P1) and 3.1 mm (P2) during ADL. It was 2.8 mm (P1) and 1.1 mm (P2) during sports activities. The humeral head greater and lesser tuberosities came the nearest to the acromion. The proposed technique increases the number of trials acquired during one experiment compared to previous. The identification of movements maximizing AHD is possible, which may provide benefits for shoulder rehabilitation.  相似文献   

17.
Red swamp crayfish (Procambarus clarkii) and signal crayfish (Pacifastacus leniusculus) are two invasive freshwater species with a worldwide distribution. The objective of this work was to investigate how the two species move and use space in an area of recent coexistence. Simultaneously, we test the use of new tools and indices to describe their movement patterns. To accomplish this we performed a radio-tracking program within a river-type habitat during two different periods (September/October 2010 and June/July 2013). We used spatial analysis tools to map crayfish radio-location data with and without accounting for the curvature of the river. To assess the consistency of the direction of movement and of the distances traveled by crayfish, two indices were developed. To assess the habitat preferences of each species we applied Ivlev's Electivity Index and the Standardized Forage Ratio. Movement of P. clarkii and P. leniusculus differed. The average detected movement was 8.8 m day−1 for P. clarkii and 17.5 m day−1 for P. leniusculus. However, crayfish behavior ranged from almost complete immobility – sometimes during several days – to large movements, in half a day, up to a maximum of 255 m for P. clarkii and 461 m for P. leniusculus. The proportion of upstream or downstream movements was independent of the species and both species displayed no preference for either direction. The indices of consistency of movement showed a large interindividual variation. Species and period (2010 or 2013) affected the mean daily distance traveled, maximum observed distance from location of release and percentage of observations under vegetation cover. The Ivlev's Electivity Index and the Standardized Forage Ratio presented similar results. P. clarkii showed a preference for pool areas with riparian vegetation cover while P. leniusculus preferred riffle and pool areas with riparian vegetation cover. Our work provided new and valuable data for modeling the active dispersal of these two problematic invaders in a context of coexistence.  相似文献   

18.
The cumulative movements of large mammals are expressed in many areas as semi-permanent wildlife trails. The mapping of semi-permanent trail networks offers a direct approach to assess habitat selection of high-use movement routes at relatively fine spatial scales across a landscape. Here we examine an ungulate trail network in north-central Utah created and maintained by the repeated movements of mule deer (Odocoileus hemionus) and elk (Cervus elaphus). In a resource selection analysis using multivariable spatial regression analysis, we show that at a spatial scale of 70 m open and low cover and distance to water are important predictors of movement pathway density. We also demonstrate at a scale of 10 m that elk and deer movement pathways are less steep than adjacent terrain. The mapping of trail networks should be a particularly useful technique for examining functional connectivity among resource patches across a landscape and identifying important high-use movement routes.  相似文献   

19.
The trunk has a multi-segmental structure and is composed of the cervical, thoracic, and lumber spines and surrounding soft tissue elements; this allows flexible deformation during dynamic movements. The purpose of this study was to quantitatively assess trunk deformation during dynamic movement. Ten male subjects performed running at four different speeds: 8 km/h, 10 km/h, 12 km/h, and 14 km/h. Forty reflective markers were placed on the backs of these individuals to define 56 small triangular areas, and three-dimensional kinematic data was recorded with a motion capture system. The coefficients of variation (CV) of the horizontal and vertical lengths between two adjacent markers and the standard deviation (SD) of the normal vectors of triangular areas were calculated as measures for translational and angular trunk deformation, respectively. Up to about 14% of CV and 78° of SD appeared as the measure of translational and angular deformation, respectively. These results imply that the trunk underwent a significant amount of position-specific deformation. These findings would be useful in the construction of an optimal trunk segment model to represent the complex and flexible trunk movement during dynamic movements.  相似文献   

20.
The purpose of this experiment was to determine if different methods of forage conservation influenced horse preference for conserved forages. Silage, haylage with two different dry matter (DM) levels and hay was produced from the same grass crop at the same botanical maturity stage. Four horses were simultaneously offered the four forages (1 kg DM of each forage) once daily for four consecutive experimental periods, each period consisting of 5 days. On each experimental day, the horses were observed for 2 h and their first choice, eating time and forage consumption was registered for every forage. The number of times each horse depleted individual forages and the number of times each horse tasted or smelled a forage, but left it in favour of another forage, was also recorded. Silage had the highest rate of consumption (0.90 kg DM/day, S.D. 0.14) and longest eating time (28.4 min/day, S.D. 5.16). Hay had the lowest rate of consumption (0.23 kg DM/day, S.D. 0.14) and shortest eating time (6.8 min/day, S.D. 4.08), while the haylages were intermediate. Silage was the first choice 72 of 84 times (85%). Hay was never completely consumed and silage was never left in favour of another forage after smelling or tasting it. We conclude that the forage conservation methods had an impact on horse preference in favour of silage, even if the reason for silage preference remains to be explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号