首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell migration plays an important role in embryonic development, wound healing, immune responses, and in pathological phenomena such as tissue invasion and metastasis formation. In this review, we summarize recent reports that connect the focal adhesion kinase (FAK) to cell migration and invasion. FAK is a nonreceptor protein tyrosine kinase involved in signal transduction from integrin-enriched focal adhesion sites that mediate cell contact with the extracellular matrix. Multiple protein-protein interaction sites allow FAK to associate with adapter and structural proteins allowing for the modulation of mitogen-activated protein (MAP) kinases, stress-activated protein (SAP) kinases, and small GTPase activity. FAK-enhanced signals have been shown to mediate the survival of anchorage-dependent cells and are critical for efficient cell migration in response to growth factor receptor and integrin stimulation. Elevated expression of FAK in human tumors has been correlated with increased malignancy and invasiveness. Because recent findings show that FAK contributes to the secretion of matrix-metalloproteinases, FAK may represent an important checkpoint in coordinating the dynamic processes of cell motility and extracellular matrix remodeling during tumor cell invasion.  相似文献   

3.
Actin,microtubules and focal adhesion dynamics during cell migration   总被引:6,自引:0,他引:6  
Cell migration is a complex cellular behavior that results from the coordinated changes in the actin cytoskeleton and the controlled formation and dispersal of cell-substrate adhesion sites. While the actin cytoskeleton provides the driving force at the cell front, the microtubule network assumes a regulatory function in coordinating rear retraction. The polarity within migrating cells is further highlighted by the stationary behavior of focal adhesions in the front and their sliding in trailing ends. We discuss here the cross-talk of the actin cytoskeleton with the microtubule network and the potential mechanisms that control the differential behavior of focal adhesions sites during cell migration.  相似文献   

4.
The fibronectin (FN)-binding integrins alpha4beta1 and alpha5beta1 confer different cell adhesive properties, particularly with respect to focal adhesion formation and migration. After analyses of alpha4+/alpha5+ A375-SM melanoma cell adhesion to fragments of FN that interact selectively with alpha4beta1 and alpha5beta1, we now report two differences in the signals transduced by each receptor that underpin their specific adhesive properties. First, alpha5beta1 and alpha4beta1 have a differential requirement for cell surface proteoglycan engagement for focal adhesion formation and migration; alpha5beta1 requires a proteoglycan coreceptor (syndecan-4), and alpha4beta1 does not. Second, adhesion via alpha5beta1 caused an eightfold increase in protein kinase Calpha (PKCalpha) activation, but only basal PKCalpha activity was observed after adhesion via alpha4beta1. Pharmacological inhibition of PKCalpha and transient expression of dominant-negative PKCalpha, but not dominant-negative PKCdelta or PKCzeta constructs, suppressed focal adhesion formation and cell migration mediated by alpha5beta1, but had no effect on alpha4beta1. These findings demonstrate that different integrins can signal to induce focal adhesion formation and migration by different mechanisms, and they identify PKCalpha signaling as central to the functional differences between alpha4beta1 and alpha5beta1.  相似文献   

5.
The Rho GTPase RhoB has been shown to affect cell migration, but how it does this is not clear. Here we show that cells depleted of RhoB by RNAi are rounded and have defects in Rac-mediated spreading and lamellipodium extension, although they have active membrane ruffling around the periphery. Depletion of the exchange factor GEF-H1 induces a similar phenotype. RhoB-depleted cells migrate faster, but less persistently in a chemotactic gradient, and frequently round up during migration. RhoB-depleted cells have similar numbers of focal adhesions to control cells during spreading and migration, but show more diffuse and patchy contact with the substratum. They have lower levels of surface β1 integrin, and β1 integrin activity is reduced in actin-rich protrusions. We propose that RhoB contributes to directional cell migration by regulating β1 integrin surface levels and activity, thereby stabilizing lamellipodial protrusions.  相似文献   

6.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in extracellular matrix-induced cell migration and the activation of extracellular signal-regulated kinase (ERK). We showed here that transfection of the MT1-MMP gene into HeLa cells promoted fibronectin-induced cell migration, which was accompanied by fibronectin degradation and reduction of stable focal adhesions, which function as anchors for actin-stress fibers. MT1-MMP expression attenuated integrin clustering that was induced by adhesion of cells to fibronectin. The attenuation of integrin clustering was abrogated by MT1-MMP inhibition with a synthetic MMP inhibitor, BB94. When cultured on fibronectin, HT1080 cells, which endogenously express MT1-MMP, showed so-called motile morphology with well-organized focal adhesion formation, well-oriented actin-stress fiber formation, and the lysis of fibronectin through trails of cell migration. Inhibition of endogenous MT1-MMP by BB94 treatment or expression of the MT1-MMP carboxyl-terminal domain, which negatively regulates MT1-MMP activity, resulted in the suppression of fibronectin lysis and cell migration. BB94 treatment promoted stable focal adhesion formation concomitant with enhanced phosphorylation of tyrosine 397 of focal adhesion kinase (FAK) and reduced ERK activation. These results suggest that lysis of the extracellular matrix by MT1-MMP promotes focal adhesion turnover and subsequent ERK activation, which in turn stimulates cell migration.  相似文献   

7.
8.
The dynamic turnover of integrin-mediated adhesions is important for cell migration. Paxillin is an adaptor protein that localizes to focal adhesions and has been implicated in cell motility. We previously reported that calpain-mediated proteolysis of talin1 and focal adhesion kinase mediates adhesion disassembly in motile cells. To determine whether calpain-mediated paxillin proteolysis regulates focal adhesion dynamics and cell motility, we mapped the preferred calpain proteolytic site in paxillin. The cleavage site is between the paxillin LD1 and LD2 motifs and generates a C-terminal fragment that is similar in size to the alternative product paxillin delta. The calpain-generated proteolytic fragment, like paxillin delta, functions as a paxillin antagonist and impairs focal adhesion disassembly and migration. We generated mutant paxillin with a point mutation (S95G) that renders it partially resistant to calpain proteolysis. Paxillin-deficient cells that express paxillin S95G display increased turnover of zyxin-containing adhesions using time-lapse microscopy and also show increased migration. Moreover, cancer-associated somatic mutations in paxillin are common in the N-terminal region between the LD1 and LD2 motifs and confer partial calpain resistance. Taken together, these findings suggest a novel role for calpain-mediated proteolysis of paxillin as a negative regulator of focal adhesion dynamics and migration that may function to limit cancer cell invasion.  相似文献   

9.
We have previously shown that overexpression of focal adhesion kinase (FAK) in Chinese hamster ovary (CHO) cells promoted their migration on fibronectin. This effect was dependent on the phosphorylation of FAK at Tyr-397. This residue was known to serve as a binding site for both Src and phosphatidylinositol 3-kinase (PI3K), implying that either one or both are required for FAK to promote cell migration. In this study, we have examined the role of PI3K in FAK-promoted cell migration. We have demonstrated that the PI3K inhibitors, wortmannin and LY294002, were able to inhibit FAK-promoted migration in a dose-dependent manner. Furthermore, a FAK mutant capable of binding Src but not PI3K was generated by a substitution of Asp residue 395 with Ala. When overexpressed in CHO cells, this differential binding mutant failed to promote cell migration although its association with Src was retained. Together, these results strongly suggest that PI3K binding is required for FAK to promote cell migration and that the binding of Src and p130(Cas) to FAK may not be sufficient for this event.  相似文献   

10.
The early endosome protein Rab5 was recently shown to promote cell migration by enhancing focal adhesion disassembly through mechanisms that remain elusive. Focal adhesion disassembly is associated to proteolysis of talin, in a process that requires calpain2. Since calpain2 has been found at vesicles and endosomal compartments, we hypothesized that Rab5 stimulates calpain2 activity, leading to enhanced focal adhesion disassembly in migrating cells. We observed that calpain2 co-localizes with EEA1-positive early endosomes and co-immunoprecipitates with EEA1 and Rab5 in A549 lung carcinoma cells undergoing spreading, whereas Rab5 knock-down decreased the accumulation of calpain2 at early endosomal-enriched fractions. In addition, Rab5 silencing decreased calpain2 activity, as shown by cleavage of the fluorogenic substrate tBOC-LM-CMAC and the endogenous substrate talin. Accordingly, Rab5 promoted focal adhesion disassembly in a calpain2-dependent manner, as expression of GFP-Rab5 accelerated focal adhesion disassembly in nocodazole-synchronized cells, whereas pharmacological inhibition of calpain2 with N-acetyl-Leu-Leu-Met prevented both focal adhesion disassembly and cell migration induced by Rab5. In summary, these data uncover Rab5 as a novel regulator of calpain2 activity and focal adhesion proteolysis leading to cell migration.  相似文献   

11.
PTPD1 is a cytosolic nonreceptor tyrosine phosphatase and a positive regulator of the Src-epidermal growth factor transduction pathway. We show that PTPD1 localizes along actin filaments and at adhesion plaques. PTPD1 forms a stable complex via distinct molecular modules with actin, Src tyrosine kinase, and focal adhesion kinase (FAK), a scaffold protein kinase enriched at adhesion plaques. Overexpression of PTPD1 promoted cell scattering and migration, short hairpin RNA-mediated silencing of endogenous PTPD1, or expression of PTPD1 mutants lacking either catalytic activity (PTPD1(C1108S)) or the FERM domain (PTPD1(Delta1-325)) significantly reduced cell motility. PTPD1 and Src catalytic activities were both required for epidermal growth factor-induced FAK autophosphorylation at its active site and for downstream propagation of ERK1/2 signaling. Our findings demonstrate that PTPD1 is a component of a multivalent scaffold complex nucleated by FAK at specific intracellular sites. By modulating Src-FAK signaling at adhesion sites, PTPD1 promotes the cytoskeleton events that induce cell adhesion and migration.  相似文献   

12.
13.
14.
Large-scale proteomic and functional analysis of isolated pseudopodia revealed the Lim, actin, and SH3 domain protein (Lasp-1) as a novel protein necessary for cell migration, but not adhesion to, the extracellular matrix (ECM). Lasp-1 is a ubiquitously expressed actin-binding protein with a unique domain configuration containing SH3 and LIM domains, and is overexpressed in 8-12% of human breast cancers. We find that stimulation of nonmotile and quiescent cells with growth factors or ECM proteins facilitates Lasp-1 relocalization from the cell periphery to the leading edge of the pseudopodium, where it associates with nascent focal complexes and areas of actin polymerization. Interestingly, although Lasp-1 dynamics in migratory cells occur independently of c-Abl kinase activity and tyrosine phosphorylation, c-Abl activation by apoptotic agents specifically promotes phosphorylation of Lasp-1 at tyrosine 171, which is associated with the loss of Lasp-1 localization to focal adhesions and induction of cell death. Thus, Lasp-1 is a dynamic focal adhesion protein necessary for cell migration and survival in response to growth factors and ECM proteins.  相似文献   

15.
DOCK180 is an atypical guanine nucleotide exchange factor of Rac1 identified originally as one of the two major proteins bound to the SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130Cas, and recruits the Crk-p130Cas complex to focal adhesions. Recently, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and found that ANKRD28, a protein with twenty-six ankyrin domain-repeats, interacts with the SH3 domain of DOCK180. Knockdown of ANKRD28 reduced the migration velocity and altered the distribution of focal adhesion proteins such as Crk, paxillin, and p130Cas. On the other hand, the expression of ANKRD28, p130Cas, Crk, and DOCK180 induced hyper-phosphorylation of p130Cas, which paralleled the induction of multiple long cellular processes. Depletion of ELMO, another protein bound to the SH3 domain of DOCK180, also retarded cell migration, but its expression together with p130Cas, Crk, and DOCK180 induced extensive lamellipodial protrusion around the entire circumference without 130Cas hyperphosphorylation. These data suggest the dual modes of DOCK180-Rac regulation for cell migration.  相似文献   

16.
17.
S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 μM; IIB, K(d) = 8 μM; IIC, K(d) = 1.0 μM). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.  相似文献   

18.
The mechanisms of progesterone on endothelial cell motility are poorly investigated. Previously we showed that progesterone stimulated endothelial cell migration via the activation of actin-binding protein moesin, leading to actin cytoskeleton remodelling and the formation of cell membrane structures required for cell movement. In this study, we investigated the effects of progesterone on the formation of focal adhesion complexes, which provide anchoring sites for cell movement. In cultured human umbilical endothelial cells, progesterone enhanced focal adhesion kinase (FAK) phosphorylation at Tyr(397) in a dose- and time-dependent manner. Several signalling inhibitors interfered with progesterone-induced FAK activation, including progesterone receptor (PR) antagonist ORG 31710, specific c-Src kinase inhibitor PP2, phosphatidylinosital-3 kinase (PI3K) inhibitor wortmannin as well as ρ-associated kinase (ROCK-2) inhibitor Y27632. It suggested that PR, c-Src, PI3K and ROCK-2 are implicated in this action. In line with this, we found that progesterone rapidly promoted c-Src/PI3K/Akt activity, which activated the small GTPase RhoA/ρ-associated kinase (ROCK-2) complex, resulting in FAK phosphorylation. In the presence of progesterone, endothelial cells displayed enhanced horizontal migration, which was reversed by small interfering RNAs abrogating FAK expression. In conclusion, progesterone promotes endothelial cell movement via the rapid regulation of FAK. These findings provide new information on the biological actions of progesterone on human endothelial cells that are relevant for vascular function.  相似文献   

19.
CAIR-1/BAG-3 is a stress and survival protein that has been shown to bind SH3 domain-containing proteins through its proline-rich (PXXP) domain. Because stress and survival pathways are active during invasion and metastasis, we hypothesized that CAIR-1 is a regulator of signaling pathways that modulate cell adhesion and migration. MDA-435 human breast carcinoma cells were stably transfected with full-length CAIR-1 (FL) or a proline-rich domain deleted mutant (dPXXP). FL cells migrated poorly through collagen IV-coated filters to serum (14% of control, p=0.0004), whereas migration of dPXXP cells was more robust (228%, p=0.00001). Adhesion to collagen IV-coated surfaces was reduced in FL cells and augmented in dPXXP cells (FL 64%, p=0.03; dPXXP 138%, p=0.01). Rhodamine-phalloidin staining highlighted more stress fibers and thicker filopodial protrusions in dPXXP cells. Fewer focal adhesions were also seen in FL cells. A reduction in tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin occurred in FL cells under these conditions. In contrast, increased FAK and paxillin phosphorylation was documented in dPXXP cells. Differential FAK phosphorylation occurred at the major autophosphorylation site Y(397) and Src phosphorylation site Y(861). Concordant with these findings, there was decreased interaction between FAK and its downstream partners p(130)Cas and Crk observed in FL cells but not in dPXXP cells. These results collectively indicate that CAIR-1 may negatively regulate adhesion, focal adhesion assembly, signaling, and migration via its PXXP domain.  相似文献   

20.
Wei S  Gao X  Du J  Su J  Xu Z 《PloS one》2011,6(12):e28797
Angiogenin (ANG) acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号