首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affinity maturation of antibodies requires a unique process of targeted mutation that allows changes to accumulate in the antibody genes while the rest of the genome is protected from off-target mutations that can be oncogenic. This targeting requires that the same deamination event be repaired either by a mutagenic or a high-fidelity pathway depending on the genomic location. We have previously shown that the BRCT domain of the DNA-damage sensor PARP-1 is required for mutagenic repair occurring in the context of IgH and IgL diversification in the chicken B cell line DT40. Here we show that immunoprecipitation of the BRCT domain of PARP-1 pulls down Ku70 and the DNA-PK complex although the BRCT domain of PARP-1 does not bind DNA, suggesting that this interaction is not DNA dependent. Through sequencing the IgL variable region in PARP-1(-/-) cells that also lack Ku70 or Lig4, we show that Ku70 or Lig4 deficiency restores GCV to PARP-1(-/-) cells and conclude that the mechanism by which PARP-1 is promoting mutagenic repair is by inhibiting high-fidelity repair which would otherwise be mediated by Ku70 and Lig4.  相似文献   

2.
Activation-induced cytidine deaminase (AID) protein initiates Ig gene mutation by deaminating cytosines, converting them into uracils. Excision of AID-induced uracils by uracil-N-glycosylase is responsible for most transversion mutations at G:C base pairs. On the other hand, processing of AID-induced G:U mismatches by mismatch repair factors is responsible for most mutation at Ig A:T base pairs. Why mismatch processing should be error prone is unknown. One theory proposes that long patch excision in G1-phase leads to dUTP-incorporation opposite adenines as a result of the higher G1-phase ratio of nuclear dUTP to dTTP. Subsequent base excision at the A:U base pairs produced could then create non-instructional templates leading to permanent mutations at A:T base pairs (1). This compelling theory has remained untested. We have developed a method to rapidly modify DNA repair pathways in mutating mouse B cells in vivo by transducing Ig knock-in splenic mouse B cells with GFP-tagged retroviruses, then adoptively transferring GFP+ cells, along with appropriate antigen, into primed congenic hosts. We have used this method to show that dUTP-incorporation is unlikely to be the cause of AID-induced mutation of A:T base pairs, and instead propose that A:T mutations might arise as an indirect consequence of nucleotide paucity during AID-induced DNA repair.  相似文献   

3.
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear. Proliferating cell nuclear antigen (PCNA), the sliding clamp for multiple DNA polymerases, undergoes Rad6/Rad18-dependent ubiquitination in response to DNA damage. Ubiquitinated PCNA promotes the replacement of the replicative DNA polymerase stalled at the site of a DNA lesion with a TLS polymerase. To examine the potential role of Rad18-dependent PCNA ubiquitination in SHM, we analyzed Ig gene mutations in Rad18 knockout (KO) mice immunized with T cell-dependent antigens. We found that SHM in Rad18 KO mice was similar to wild-type mice, suggesting that Rad18 is dispensable for SHM. However, residual levels of ubiquitinated PCNA were observed in Rad18 KO cells, indicating that Rad18-independent PCNA ubiquitination might play a role in SHM.  相似文献   

4.
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.  相似文献   

5.
The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1–/– MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1.  相似文献   

6.
The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR.  相似文献   

7.
Genomic uracil resulting from spontaneously deaminated cytosine generates mutagenic U:G mismatches that are usually corrected by error-free base excision repair (BER). However, in B-cells, activation-induced cytosine deaminase (AID) generates U:G mismatches in hot-spot sequences at Ig loci. These are subject to mutagenic processing during somatic hypermutation (SHM) and class switch recombination (CSR). Uracil N-glycosylases UNG2 and SMUG1 (single strand-selective monofunctional uracil-DNA glycosylase 1) initiate error-free BER in most DNA contexts, but UNG2 is also involved in mutagenic processing of AID-induced uracil during the antibody diversification process, the regulation of which is not understood. AID is strictly single strand-specific. Here we show that in the presence of Mg2+ and monovalent salts, human and mouse SMUG1 are essentially double strand-specific, whereas UNG2 efficiently removes uracil from both single and double stranded DNA under all tested conditions. Furthermore, SMUG1 and UNG2 display widely different sequence preferences. Interestingly, uracil in a hot-spot sequence for AID is 200-fold more efficiently removed from single stranded DNA by UNG2 than by SMUG1. This may explain why SMUG1, which is not excluded from Ig loci, is unable to replace UNG2 in antibody diversification. We suggest a model for mutagenic processing in which replication protein A (RPA) recruits UNG2 to sites of deamination and keeps DNA in a single stranded conformation, thus avoiding error-free BER of the deaminated cytosine.  相似文献   

8.
Poly-ADP ribose polymerase 1 (PARP-1) is activated by DNA damage and has been implicated in the repair of single-strand breaks (SSBs). Involvement of PARP-1 in other DNA damage responses remains controversial. In this study, we show that PARP-1 is required for replication fork slowing on damaged DNA. Fork progression in PARP-1−/− DT40 cells is not slowed down even in the presence of DNA damage induced by the topoisomerase I inhibitor camptothecin (CPT). Mammalian cells treated with a PARP inhibitor or PARP-1–specific small interfering RNAs show similar results. The expression of human PARP-1 restores fork slowing in PARP-1−/− DT40 cells. PARP-1 affects SSB repair, homologous recombination (HR), and nonhomologous end joining; therefore, we analyzed the effect of CPT on DT40 clones deficient in these pathways. We find that fork slowing is correlated with the proficiency of HR-mediated repair. Our data support the presence of a novel checkpoint pathway in which the initiation of HR but not DNA damage delays the fork progression.  相似文献   

9.
Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 N-terminal fragment encompassing NLS in PARP-1+/+ and PARP-1−/− mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-1+/+ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-1−/− cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.  相似文献   

10.
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress. Furthermore, OGG1 binds to PARP-1 through its BRCA1 C-terminal (BRCT) domain. OGG1 stimulated the poly(ADP-ribosyl)ation activity of PARP-1, whereas decreased poly(ADP-ribose) levels were observed in OGG1(-/-) cells compared with wild-type cells in response to DNA damage. Importantly, activated PARP-1 inhibits OGG1. Although the OGG1 polymorphic variant proteins R229Q and S326C bind to PARP-1, these proteins were defective in activating PARP-1. Furthermore, OGG1(-/-) cells were more sensitive to PARP inhibitors alone or in combination with a DNA-damaging agent. These findings indicate that OGG1 binding to PARP-1 plays a functional role in the repair of oxidative DNA damage.  相似文献   

11.
Greater than 75% of all hematologic malignancies derive from germinal center (GC) or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID), GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR). Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID -/- mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.  相似文献   

12.
13.
Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID) in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27IgA+ and CD27IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27 cells from patients. Taken together, these results show that during HIV-1 infection, CD27 B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection.  相似文献   

14.
15.
Poly adenosine diphosphate-ribose polymerase-1 (PARP-1) is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N) stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR), and formation of the soluble 2nd messenger monomeric adenosine diphosphate-ribose (mADPR). Previous studies have delineated specific roles for several of PARP-1′s structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1′s BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.  相似文献   

16.
17.
Liu Y  Kadyrov FA  Modrich P 《DNA Repair》2011,10(11):1145-1153
End-directed mismatch-provoked excision has been reconstituted in several purified systems. While 3'-directed excision displays a mismatch dependence similar to that observed in nuclear extracts (≈20-fold), the mismatch dependence of 5'-directed excision is only 3-4-fold, significantly less than that in extracts (8-10-fold). Utilizing a fractionation-based approach, we have isolated a single polypeptide that enhances mismatch dependence of reconstituted 5'-directed excision and have shown it to be identical to poly[ADP-ribose] polymerase 1 (PARP-1). Titration of reconstituted excision reactions or PARP-1-depleted HeLa nuclear extract with purified PARP-1 showed that the protein specifically enhances mismatch dependence of 5'-directed excision. Analysis of a set of PARP-1 mutants revealed that the DNA binding domain and BRCT fold contribute to the regulation of excision specificity. Involvement of the catalytic domain is restricted to its ability to poly(ADP-ribosyl)ate PARP-1 in the presence of NAD(+), likely through interference with DNA binding. Analysis of protein-protein interactions demonstrated that PARP-1 interacts with mismatch repair proteins MutSα, exonuclease 1, replication protein A (RPA), and as previously shown by others, replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) as well. The BRCT fold plays an important role in the interaction of PARP-1 with the former three proteins.  相似文献   

18.
We investigated the physical association of the DNA topoisomerase IIbeta binding protein 1 (TopBP1), involved in DNA replication and repair but also in regulation of apoptosis, with poly(ADP-ribose) polymerase-1 (PARP-1). This enzyme plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. It was shown that the sixth BRCA1 C-terminal (BRCT) domain of TopBP1 interacts with a protein fragment of PARP-1 in vitro containing the DNA-binding and the automodification domains. More significantly, the in vivo interaction of endogenous TopBP1 and PARP-1 proteins could be shown in HeLa-S3 cells by co-immunoprecipitation. TopBP1 and PARP-1 are localized within overlapping regions in the nucleus of HeLa-S3 cells as shown by immunofluorescence. Exposure to UVB light slightly enhanced the interaction between both proteins. Furthermore, TopBP1 was detected in nuclear regions where poly(ADP-ribose) (PAR) synthesis takes place and is ADP-ribosylated by PARP-1. Finally, cellular (ADP-ribosyl)ating activity impairs binding of TopBP1 to Myc-interacting zinc finger protein-1 (Miz-1). The results indicate an influence of post-translational modifications of TopBP1 on its function during DNA repair.  相似文献   

19.
Hereditary breast cancer constitutes 5–10% of all breast cancer cases. Inherited mutations in the BRCA1 and BRCA2 tumor-suppressor genes account for the majority of hereditary breast cancer cases. The BRCA1 C-terminal region (BRCT) has a functional duplicated globular domain, which helps with DNA damage repair and cell cycle checkpoint protein control. More than 100 distinct BRCA1 missense variants with structural and functional effects have been documented within the BRCT domain. Interpreting the results of mutation screening of tumor-suppressor genes that can have high-risk susceptibility mutations is increasingly important in clinical practice. This study includes a novel mutation, p.His1746 Pro (c.5237A>C), which was found in BRCA1 exon 20 of a breast cancer patient. In silico analysis suggests that this mutation could alter the stability and orientation of the BRCT domain and the differential binding of the BACH1 substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号